|
Zapiski Nauchnykh Seminarov POMI, 2010, Volume 375, Pages 48–60
(Mi znsl3607)
|
|
|
|
This article is cited in 7 scientific papers (total in 7 papers)
Dennis–Vaserstein type decompositions
N. A. Vavilov, S. S. Sinchuk Saint-Petersburg State University, Saint-Petersburg, Russia
Abstract:
We prove a generalisation of Dennis–Vaserstein decomposition for an arbitrary pair of maximal parabolic subgroups $P_r$ and $P_s$ in the general linear group $\mathrm{GL}(n,R)$, provided that $r-s\geq\mathrm{sr}(R)$. The usual Dennis–Vaserstein decomposition is the special case where $r=n-1$, $s=1$. Bibl. – 23 titles.
Key words and phrases:
general linear group, lementary subgroup, parabolic subgroups, stable rank, Dennis–Vaserstein decomposition.
Received: 13.03.2010
Citation:
N. A. Vavilov, S. S. Sinchuk, “Dennis–Vaserstein type decompositions”, Problems in the theory of representations of algebras and groups. Part 19, Zap. Nauchn. Sem. POMI, 375, POMI, St. Petersburg, 2010, 48–60; J. Math. Sci. (N. Y.), 171:3 (2010), 331–337
Linking options:
https://www.mathnet.ru/eng/znsl3607 https://www.mathnet.ru/eng/znsl/v375/p48
|
Statistics & downloads: |
Abstract page: | 417 | Full-text PDF : | 122 | References: | 59 |
|