Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2010, Volume 375, Pages 5–21 (Mi znsl3604)  

This article is cited in 1 scientific paper (total in 1 paper)

Parabolic subgroups of $\mathrm{SL}_n$ and $\mathrm{Sp}_{2l}$ over a Dedekind ring of arithmetic type

A. V. Alexandrov, N. A. Vavilov

Saint-Petersburg State University, Saint-Petersburg, Russia
Full-text PDF (636 kB) Citations (1)
References:
Abstract: Let $R$ be a commutative ring all of whose proper factor rings are finite and such that there exists a unit of infinite order. We show that for a subgroup $P$ in $G=\mathrm{SL}(n,R)$, $n\ge3$, or in $G=\mathrm{Sp}(2l,R)$, $l\ge2$, containing Borel subgroup $B$, the following alternative holds. Either $P$ contains a relative elementary subgroup $E_I$ for some ideal $I\neq0$, or $H$ is contained in a proper standard parabolic subgroup. For Dedekind rings of arithmetic type this allows, under some mild additional assumptions on units, to completely describe overgroups of $B$ in $G$. Bibl. – 30 titles.
Key words and phrases: special linear group, symplectic group, transvections, parabolic subgroups, Dedekind ring of arythmetic type.
Received: 31.03.2010
English version:
Journal of Mathematical Sciences (New York), 2010, Volume 171, Issue 3, Pages 307–316
DOI: https://doi.org/10.1007/s10958-010-0135-3
Bibliographic databases:
Document Type: Article
UDC: 513.6
Language: Russian
Citation: A. V. Alexandrov, N. A. Vavilov, “Parabolic subgroups of $\mathrm{SL}_n$ and $\mathrm{Sp}_{2l}$ over a Dedekind ring of arithmetic type”, Problems in the theory of representations of algebras and groups. Part 19, Zap. Nauchn. Sem. POMI, 375, POMI, St. Petersburg, 2010, 5–21; J. Math. Sci. (N. Y.), 171:3 (2010), 307–316
Citation in format AMSBIB
\Bibitem{AleVav10}
\by A.~V.~Alexandrov, N.~A.~Vavilov
\paper Parabolic subgroups of $\mathrm{SL}_n$ and $\mathrm{Sp}_{2l}$ over a~Dedekind ring of arithmetic type
\inbook Problems in the theory of representations of algebras and groups. Part~19
\serial Zap. Nauchn. Sem. POMI
\yr 2010
\vol 375
\pages 5--21
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3604}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2010
\vol 171
\issue 3
\pages 307--316
\crossref{https://doi.org/10.1007/s10958-010-0135-3}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78649446442}
Linking options:
  • https://www.mathnet.ru/eng/znsl3604
  • https://www.mathnet.ru/eng/znsl/v375/p5
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:389
    Full-text PDF :82
    References:79
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024