Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2010, Volume 374, Pages 44–57 (Mi znsl3593)  

This article is cited in 5 scientific papers (total in 6 papers)

Three-magnon problem and integrability of rung-dimerized spin ladders

P. N. Bibikova, P. P. Kulishb

a St. Petersburg State University, St. Petersburg, Russia
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, St. Petersburg, Russia
Full-text PDF (205 kB) Citations (6)
References:
Abstract: Integrability problem for rung-dimerized spin ladder is studied by coordinate Bethe Ansatz method in three-magnon sector. It is shown that solvability of the three-magnon problem takes place for the same values of coupling constants in the Hamiltonian which guaranty solvability of the Yang–Baxter equation for the corresponding $R$-matrix. Bibl. – 15 titles.
Key words and phrases: Bethe Ansatz, spin chains, dimerization, Yang–Baxter equation.
Received: 30.03.2010
English version:
Journal of Mathematical Sciences (New York), 2010, Volume 168, Issue 6, Pages 781–788
DOI: https://doi.org/10.1007/s10958-010-0026-7
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: P. N. Bibikov, P. P. Kulish, “Three-magnon problem and integrability of rung-dimerized spin ladders”, Questions of quantum field theory and statistical physics. Part 21, Zap. Nauchn. Sem. POMI, 374, POMI, St. Petersburg, 2010, 44–57; J. Math. Sci. (N. Y.), 168:6 (2010), 781–788
Citation in format AMSBIB
\Bibitem{BibKul10}
\by P.~N.~Bibikov, P.~P.~Kulish
\paper Three-magnon problem and integrability of rung-dimerized spin ladders
\inbook Questions of quantum field theory and statistical physics. Part~21
\serial Zap. Nauchn. Sem. POMI
\yr 2010
\vol 374
\pages 44--57
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3593}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2010
\vol 168
\issue 6
\pages 781--788
\crossref{https://doi.org/10.1007/s10958-010-0026-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77955279130}
Linking options:
  • https://www.mathnet.ru/eng/znsl3593
  • https://www.mathnet.ru/eng/znsl/v374/p44
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:284
    Full-text PDF :73
    References:64
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024