|
Zapiski Nauchnykh Seminarov POMI, 2009, Volume 373, Pages 295–317
(Mi znsl3589)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
An overview of effective normalization of a nonsingular in codimension one projective algebraic variety
A. L. Chistov С.-Петербургское отделение Математического института им. В. А. Стеклова РАН, г. Санкт-Петербург, Россия
Abstract:
Let $V$ be a nonsingular in codimension one projective algebraic variety of degree $D$ and of dimension $n$. Then the construction of the normalization of $V$ can be reduced canonically within the time polynomial in the size of the input and $D^{n^{O(1)}}$ to solving a linear equation $aX+bY+cZ=0$ over a polynomial ring. We describe a plan with all lemmas to prove this result. Bibl. – 4 titles.
Key words and phrases:
algebraic variety, projective variety, normalization, complexity.
Received: 11.09.2009
Citation:
A. L. Chistov, “An overview of effective normalization of a nonsingular in codimension one projective algebraic variety”, Representation theory, dynamical systems, combinatorial methods. Part XVII, Zap. Nauchn. Sem. POMI, 373, POMI, St. Petersburg, 2009, 295–317; J. Math. Sci. (N. Y.), 168:3 (2010), 478–490
Linking options:
https://www.mathnet.ru/eng/znsl3589 https://www.mathnet.ru/eng/znsl/v373/p295
|
Statistics & downloads: |
Abstract page: | 250 | Full-text PDF : | 41 | References: | 50 |
|