Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2009, Volume 373, Pages 226–272 (Mi znsl3585)  

This article is cited in 7 scientific papers (total in 7 papers)

Random walks on strict partitions

L. Petrov

A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences
Full-text PDF (503 kB) Citations (7)
References:
Abstract: We construct a diffusion process in the infinite-dimensional simplex consisting of all nonincreasing infinite sequences of nonnegative numbers with sum less than or equal to one. The process is constructed as a limit of a certain sequence of Markov chains. The state space of the $n$th chain is the set of all strict partitions of $n$ (that is, partitions without equal parts). As $n\to\infty$, these random walks converge to a continuous-time strong Markov process in the infinite-dimensional simplex. The process has continuous sample paths. The main result about the limit process is the expression of its pre-generator as a formal second order differential operator in a polynomial algebra. Bibl. – 30 titles.
Key words and phrases: Markov chain, random walk, partitions, differential operator.
Received: 18.09.2009
English version:
Journal of Mathematical Sciences (New York), 2010, Volume 168, Issue 3, Pages 437–463
DOI: https://doi.org/10.1007/s10958-010-9996-8
Bibliographic databases:
Document Type: Article
UDC: 517.987
Language: Russian
Citation: L. Petrov, “Random walks on strict partitions”, Representation theory, dynamical systems, combinatorial methods. Part XVII, Zap. Nauchn. Sem. POMI, 373, POMI, St. Petersburg, 2009, 226–272; J. Math. Sci. (N. Y.), 168:3 (2010), 437–463
Citation in format AMSBIB
\Bibitem{Pet09}
\by L.~Petrov
\paper Random walks on strict partitions
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XVII
\serial Zap. Nauchn. Sem. POMI
\yr 2009
\vol 373
\pages 226--272
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3585}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2010
\vol 168
\issue 3
\pages 437--463
\crossref{https://doi.org/10.1007/s10958-010-9996-8}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77954763023}
Linking options:
  • https://www.mathnet.ru/eng/znsl3585
  • https://www.mathnet.ru/eng/znsl/v373/p226
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:277
    Full-text PDF :74
    References:42
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024