Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2009, Volume 373, Pages 210–225 (Mi znsl3584)  

The 2-$d$ Jacobian conjecture, the $d$-inversion approximation and its natural boundary

R. Peretz

Department of Mathematics, Ben Gurion University of the Negev, Beer-Sheva, Israel
References:
Abstract: Let $F\in\mathbb C[X,Y]^2$ be an étale mapping of degree $\operatorname{deg}F=d$. An Étale mapping $G\in\mathbb C[X,Y]^2$ is called a $d$-inverse approximation of $F$ if $\operatorname{deg}G\le d$ and $F\circ G=(X+A(X,Y),Y+B(X,Y))$ and $G\circ F=(X+C(X,Y),Y+D(X,Y))$ where the orders of the four polynomials $A,B,C$ and $D$ are greater that $d$. It is a well known result that every $\mathbb C^2$ automorphism $F$ of degree $d$ has a $d$-inverse approximation, namely $F^{-1}$. In this paper we prove that if $F$ is a counterexample of degree $d$ to the 2-dimensional Jacobian Conjecture, then $F$ has no $d$-inverse approximation. We also give few conclusions of this result. Bibl. – 18 titles.
Key words and phrases: the Jacobian conjecture, étale morphisms, inversion formulas, polynomial automorphisms, natural boundary.
Received: 19.08.2009
English version:
Journal of Mathematical Sciences (New York), 2010, Volume 168, Issue 3, Pages 428–436
DOI: https://doi.org/10.1007/s10958-010-9995-9
Bibliographic databases:
Document Type: Article
UDC: 517.55+512.71
Language: English
Citation: R. Peretz, “The 2-$d$ Jacobian conjecture, the $d$-inversion approximation and its natural boundary”, Representation theory, dynamical systems, combinatorial methods. Part XVII, Zap. Nauchn. Sem. POMI, 373, POMI, St. Petersburg, 2009, 210–225; J. Math. Sci. (N. Y.), 168:3 (2010), 428–436
Citation in format AMSBIB
\Bibitem{Per09}
\by R.~Peretz
\paper The 2-$d$ Jacobian conjecture, the $d$-inversion approximation and its natural boundary
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XVII
\serial Zap. Nauchn. Sem. POMI
\yr 2009
\vol 373
\pages 210--225
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3584}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2010
\vol 168
\issue 3
\pages 428--436
\crossref{https://doi.org/10.1007/s10958-010-9995-9}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77954757959}
Linking options:
  • https://www.mathnet.ru/eng/znsl3584
  • https://www.mathnet.ru/eng/znsl/v373/p210
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:202
    Full-text PDF :61
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024