Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2009, Volume 373, Pages 194–209 (Mi znsl3583)  

This article is cited in 1 scientific paper (total in 1 paper)

Correct and selfadjoint problems with cubic operators

I. N. Parasidisa, P. C. Tsekrekosb, T. G. Lokkasb

a Technological Educational Institute of Larissa, Greece
b Department of Mathematics, National Technical University of Athens, Greece
Full-text PDF (239 kB) Citations (1)
References:
Abstract: In this paper we present a simple method to prove correctness and selfadjointness of operators $B^3$ , corresponding to some boundary problems. We give also the unique solutions for these problems. The algorithm is easy to implement via computer algebra systems. In our examples Derive and Mathematica were used. Bibl. – 10 titles.
Key words and phrases: correctness, selfadjoint operator, boundary problem, cubic operator.
Received: 02.10.2009
English version:
Journal of Mathematical Sciences (New York), 2010, Volume 168, Issue 3, Pages 420–427
DOI: https://doi.org/10.1007/s10958-010-9994-x
Bibliographic databases:
Document Type: Article
UDC: 519.63+517.951
Language: Russian
Citation: I. N. Parasidis, P. C. Tsekrekos, T. G. Lokkas, “Correct and selfadjoint problems with cubic operators”, Representation theory, dynamical systems, combinatorial methods. Part XVII, Zap. Nauchn. Sem. POMI, 373, POMI, St. Petersburg, 2009, 194–209; J. Math. Sci. (N. Y.), 168:3 (2010), 420–427
Citation in format AMSBIB
\Bibitem{ParTseLok09}
\by I.~N.~Parasidis, P.~C.~Tsekrekos, T.~G.~Lokkas
\paper Correct and selfadjoint problems with cubic operators
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XVII
\serial Zap. Nauchn. Sem. POMI
\yr 2009
\vol 373
\pages 194--209
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3583}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2010
\vol 168
\issue 3
\pages 420--427
\crossref{https://doi.org/10.1007/s10958-010-9994-x}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77954759849}
Linking options:
  • https://www.mathnet.ru/eng/znsl3583
  • https://www.mathnet.ru/eng/znsl/v373/p194
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:247
    Full-text PDF :47
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024