|
Zapiski Nauchnykh Seminarov POMI, 2009, Volume 373, Pages 134–143
(Mi znsl3579)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
Universal and comprehensive Gröbner bases of the classical determinantal ideal
M. Kalinin M. V. Lomonosov MSU
Abstract:
Let $A=(x_{ij}), i=1,2,\dots,k$, $j=1,2,\dots,l$, $1\leq k \leq l$, be a matrix of independent variables, $G$ the set of maximal minors of $A$, $I=(G)$ the classical determinantal ideal. We show that $G$ is a universal Gröbner basis of $I$. Also a sufficient condition of $G$ being a universal comprehensive Gröbner basis is proven. Bibl. – 12 titles.
Key words and phrases:
Gröbner basis, universal Gröbner basis, determinantal ideal, maximal minors.
Received: 11.09.2009
Citation:
M. Kalinin, “Universal and comprehensive Gröbner bases of the classical determinantal ideal”, Representation theory, dynamical systems, combinatorial methods. Part XVII, Zap. Nauchn. Sem. POMI, 373, POMI, St. Petersburg, 2009, 134–143; J. Math. Sci. (N. Y.), 168:3 (2010), 385–389
Linking options:
https://www.mathnet.ru/eng/znsl3579 https://www.mathnet.ru/eng/znsl/v373/p134
|
Statistics & downloads: |
Abstract page: | 272 | Full-text PDF : | 80 | References: | 47 |
|