Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2009, Volume 373, Pages 104–123 (Mi znsl3577)  

This article is cited in 7 scientific papers (total in 7 papers)

On the ring of local invariants for a pair of the entangled $q$-bits

V. Gerdta, Yu. Paliib, A. Khvedelidzec

a Joint Institute for Nuclear Research, Dubna, Russia
b Institute of Applied Physics Academy of Sciences of Moldova, Kishinev, Moldova
c A. Razmadze Mathematical Institute, Tbilisi, Georgia
Full-text PDF (294 kB) Citations (7)
References:
Abstract: The entanglement characteristics of two $q$-bits are encoded in the invariants of the adjoint action of the group $\mathrm{SU}(2)\otimes\mathrm{SU}(2)$ on the space of the density matrices $\mathfrak P_+$, i.e., space of $4\times4$ non-negative Hermitian matrices. The corresponding ring $\mathbb C[\mathfrak P_+]^{\mathrm{SU}(2)\otimes\mathrm{SU}(2)}$ in elements of the density matrix is studied. The special integrity basis for $\mathbb C[\mathfrak P_+]^{\mathrm{SU}(2)\otimes\mathrm{SU}(2)}$ is described and constraints on its elements due to the semi-definiteness of the density matrix are given explicitly in the form of inequalities. This basis has the property that only a minimal number of primary invariants of degree 2, 3 and one lowest degree 4 secondary invariant that appear in the Hironaka decomposition of $\mathbb C[\mathfrak P_+]^{\mathrm{SU}(2)\otimes\mathrm{SU}(2)}$ are subject to the polynomial inequalities. Bibl. – 32 titles.
Key words and phrases: polynomial invariants, entanglement space, Hironaka decomposition.
Received: 21.09.2009
English version:
Journal of Mathematical Sciences (New York), 2010, Volume 168, Issue 3, Pages 368–378
DOI: https://doi.org/10.1007/s10958-010-9988-8
Bibliographic databases:
Document Type: Article
UDC: 517.986
Language: Russian
Citation: V. Gerdt, Yu. Palii, A. Khvedelidze, “On the ring of local invariants for a pair of the entangled $q$-bits”, Representation theory, dynamical systems, combinatorial methods. Part XVII, Zap. Nauchn. Sem. POMI, 373, POMI, St. Petersburg, 2009, 104–123; J. Math. Sci. (N. Y.), 168:3 (2010), 368–378
Citation in format AMSBIB
\Bibitem{GerPalKhv09}
\by V.~Gerdt, Yu.~Palii, A.~Khvedelidze
\paper On the ring of local invariants for a~pair of the entangled $q$-bits
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XVII
\serial Zap. Nauchn. Sem. POMI
\yr 2009
\vol 373
\pages 104--123
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3577}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2010
\vol 168
\issue 3
\pages 368--378
\crossref{https://doi.org/10.1007/s10958-010-9988-8}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77954762501}
Linking options:
  • https://www.mathnet.ru/eng/znsl3577
  • https://www.mathnet.ru/eng/znsl/v373/p104
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:288
    Full-text PDF :85
    References:42
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024