Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2009, Volume 373, Pages 94–103 (Mi znsl3576)  

This article is cited in 3 scientific papers (total in 3 papers)

Algebraically simple involutive differential systems and Cauchy problem

V. P. Gerdt

Laboratory of Information Technologies, Joint Institute for Nuclear Research, Dubna, Russia
Full-text PDF (224 kB) Citations (3)
References:
Abstract: Systems of polynomial-nonlinear partial differential equations (PDEs) possessing certain properties are considered. Such systems studied by American mathematician Thomas in the 30th of the XX-th century and called him (algebraically) simple. Thomas gave a constructive procedure to split an arbitrary system of PDEs into a finite number of simple susbsystems. The class of simple involutive systems of PDEs includes the normal or Kovalewskaya-type systems and Riquier's orthonomic passive systems. This class admits well-posing of the Cauchy problem. We discuss the basic features of the splitting algorithm, completion of simple systems to involution and posing the Cauchy problem. Two illustrative examples are given. Bibl. – 17 titles.
Key words and phrases: nonlinear PDEs, involution, algebraically simple systems, Cauchy problem, analytical solution, splitting procedure, computer algebra.
Received: 05.03.2009
English version:
Journal of Mathematical Sciences (New York), 2010, Volume 168, Issue 3, Pages 362–367
DOI: https://doi.org/10.1007/s10958-010-9987-9
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: English
Citation: V. P. Gerdt, “Algebraically simple involutive differential systems and Cauchy problem”, Representation theory, dynamical systems, combinatorial methods. Part XVII, Zap. Nauchn. Sem. POMI, 373, POMI, St. Petersburg, 2009, 94–103; J. Math. Sci. (N. Y.), 168:3 (2010), 362–367
Citation in format AMSBIB
\Bibitem{Ger09}
\by V.~P.~Gerdt
\paper Algebraically simple involutive differential systems and Cauchy problem
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XVII
\serial Zap. Nauchn. Sem. POMI
\yr 2009
\vol 373
\pages 94--103
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3576}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2010
\vol 168
\issue 3
\pages 362--367
\crossref{https://doi.org/10.1007/s10958-010-9987-9}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77954756950}
Linking options:
  • https://www.mathnet.ru/eng/znsl3576
  • https://www.mathnet.ru/eng/znsl/v373/p94
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:180
    Full-text PDF :64
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024