Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2009, Volume 372, Pages 187–202 (Mi znsl3570)  

On homotopy invariants of maps to the circle

S. S. Podkorytov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia
References:
Abstract: Homotopy classes of maps of a space $X$ to the circle $T$ form an Abelian group $B(X)$ (Bruschlinsky group). A map $f\colon B(X)\to C$, where $C$ is an Abelian group, has order at most $r$ if for a continuous map $a\colon X\to T$ the value $f([a])$ can be $\mathbb Z$-linearly expressed in terms of the indicator function $I_r(a)\colon(X\times T)^r\to\mathbb Z$ of the $r$th Cartesian power of the graph of $a$. We prove that the order of $f$ equals the algebraic degree of $f$. (A map between abelian groups has degree at most $r$ if its finite differences of order $r+1$ vanish.) Bibl. – 2 titles.
Key words and phrases: Bruschlinsky group, order of an invariant, degree of a mapping.
Received: 11.05.2009
English version:
Journal of Mathematical Sciences (New York), 2011, Volume 175, Issue 5, Pages 609–619
DOI: https://doi.org/10.1007/s10958-011-0376-9
Bibliographic databases:
Document Type: Article
UDC: 515.143
Language: Russian
Citation: S. S. Podkorytov, “On homotopy invariants of maps to the circle”, Geometry and topology. Part 11, Zap. Nauchn. Sem. POMI, 372, POMI, St. Petersburg, 2009, 187–202; J. Math. Sci. (N. Y.), 175:5 (2011), 609–619
Citation in format AMSBIB
\Bibitem{Pod09}
\by S.~S.~Podkorytov
\paper On homotopy invariants of maps to the circle
\inbook Geometry and topology. Part~11
\serial Zap. Nauchn. Sem. POMI
\yr 2009
\vol 372
\pages 187--202
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3570}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2011
\vol 175
\issue 5
\pages 609--619
\crossref{https://doi.org/10.1007/s10958-011-0376-9}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79958026397}
Linking options:
  • https://www.mathnet.ru/eng/znsl3570
  • https://www.mathnet.ru/eng/znsl/v372/p187
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:216
    Full-text PDF :69
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024