|
Zapiski Nauchnykh Seminarov POMI, 2009, Volume 372, Pages 187–202
(Mi znsl3570)
|
|
|
|
On homotopy invariants of maps to the circle
S. S. Podkorytov St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia
Abstract:
Homotopy classes of maps of a space $X$ to the circle $T$ form an Abelian group $B(X)$ (Bruschlinsky group). A map $f\colon B(X)\to C$, where $C$ is an Abelian group, has order at most $r$ if for a continuous map $a\colon X\to T$ the value $f([a])$ can be $\mathbb Z$-linearly expressed in terms of the indicator function $I_r(a)\colon(X\times T)^r\to\mathbb Z$ of the $r$th Cartesian power of the graph of $a$. We prove that the order of $f$ equals the algebraic degree of $f$. (A map between abelian groups has degree at most $r$ if its finite differences of order $r+1$ vanish.) Bibl. – 2 titles.
Key words and phrases:
Bruschlinsky group, order of an invariant, degree of a mapping.
Received: 11.05.2009
Citation:
S. S. Podkorytov, “On homotopy invariants of maps to the circle”, Geometry and topology. Part 11, Zap. Nauchn. Sem. POMI, 372, POMI, St. Petersburg, 2009, 187–202; J. Math. Sci. (N. Y.), 175:5 (2011), 609–619
Linking options:
https://www.mathnet.ru/eng/znsl3570 https://www.mathnet.ru/eng/znsl/v372/p187
|
Statistics & downloads: |
Abstract page: | 216 | Full-text PDF : | 69 | References: | 27 |
|