Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2009, Volume 372, Pages 119–123 (Mi znsl3564)  

On three-dimensional bodies of constant width

V. V. Makeev

Saint-Petersburg State University, Saint-Petersburg, Russia
References:
Abstract: The main results are as follows. Let $K$ be a three-dimensional body of constant width 1, and let $L$ be a line. We denote by $L(K)$ the set of all points where tangent lines of $K$ parallel to $L$ touch $K$. It is proved that for each $L$ the curve $L(K)$ is rectifiable and its length is at most $\sqrt2\pi$; this estimate is sharp. Furthermore, there always exists a line $L$ such that the length of the orthogonal projection of $L(K)$ to $L$ is at most $\sin(\pi/10)+\sin(\pi/20)<0.466$. Bibl. – 2 titles.
Key words and phrases: convex body, figure of constant width.
Received: 25.12.2008
English version:
Journal of Mathematical Sciences (New York), 2011, Volume 175, Issue 5, Pages 569–571
DOI: https://doi.org/10.1007/s10958-011-0370-2
Bibliographic databases:
Document Type: Article
UDC: 514.172
Language: Russian
Citation: V. V. Makeev, “On three-dimensional bodies of constant width”, Geometry and topology. Part 11, Zap. Nauchn. Sem. POMI, 372, POMI, St. Petersburg, 2009, 119–123; J. Math. Sci. (N. Y.), 175:5 (2011), 569–571
Citation in format AMSBIB
\Bibitem{Mak09}
\by V.~V.~Makeev
\paper On three-dimensional bodies of constant width
\inbook Geometry and topology. Part~11
\serial Zap. Nauchn. Sem. POMI
\yr 2009
\vol 372
\pages 119--123
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3564}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2011
\vol 175
\issue 5
\pages 569--571
\crossref{https://doi.org/10.1007/s10958-011-0370-2}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79958061877}
Linking options:
  • https://www.mathnet.ru/eng/znsl3564
  • https://www.mathnet.ru/eng/znsl/v372/p119
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:200
    Full-text PDF :67
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024