|
Zapiski Nauchnykh Seminarov POMI, 2009, Volume 371, Pages 171–175
(Mi znsl3552)
|
|
|
|
Short communications
On distortion theorems for typically real functions
E. G. Goluzina St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg
Abstract:
The author's investigation in the class $T$ of typically real functions $f(z)$ in the disk $|z|<1$ are prolonged. The region of values of $f'(z_1)$ in the class of functions $f\in T$ with fixed values $f(z_1)$ and $f(r_j)$ $(j=1,2)$ is determined. Here $|z_1|<1$, $\operatorname{Im}z_1\ne0$, $0<r_j<1$ $(j=1,2)$. Bibl. – 4 titles.
Key words and phrases:
typically real function, distortion theorems, region of values.
Received: 12.11.2009
Citation:
E. G. Goluzina, “On distortion theorems for typically real functions”, Analytical theory of numbers and theory of functions. Part 24, Zap. Nauchn. Sem. POMI, 371, POMI, St. Petersburg, 2009, 171–175; J. Math. Sci. (N. Y.), 166:2 (2010), 222–224
Linking options:
https://www.mathnet.ru/eng/znsl3552 https://www.mathnet.ru/eng/znsl/v371/p171
|
Statistics & downloads: |
Abstract page: | 137 | Full-text PDF : | 38 | References: | 30 |
|