Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2009, Volume 371, Pages 69–77 (Mi znsl3545)  

This article is cited in 2 scientific papers (total in 2 papers)

A sewing theorem for quadratic differentials

E. G. Emel'yanov

St. Petersburg State University of Economics and Finance, St. Petersburg, Russia
Full-text PDF (573 kB) Citations (2)
References:
Abstract: Quadratic differentials on a finite Riemann surface with poles of order not exceeding two are considered. The existence of such a differential with prescribed metrical characteristics is proved. These characteristics are the following: the first coefficients in the expansions of a quadratic differential in neighborhoods of it's poles of order two, the conformal modules of the ring domains, and the heights of the strip domains in the decomposition of the Riemann surface defined by this differential. Bibl. – 5 titles.
Key words and phrases: quadratic differential, trajectory, extremal decomposition.
Received: 18.10.2009
English version:
Journal of Mathematical Sciences (New York), 2010, Volume 166, Issue 2, Pages 162–166
DOI: https://doi.org/10.1007/s10958-010-9856-6
Bibliographic databases:
Document Type: Article
UDC: 517.54
Language: Russian
Citation: E. G. Emel'yanov, “A sewing theorem for quadratic differentials”, Analytical theory of numbers and theory of functions. Part 24, Zap. Nauchn. Sem. POMI, 371, POMI, St. Petersburg, 2009, 69–77; J. Math. Sci. (N. Y.), 166:2 (2010), 162–166
Citation in format AMSBIB
\Bibitem{Eme09}
\by E.~G.~Emel'yanov
\paper A sewing theorem for quadratic differentials
\inbook Analytical theory of numbers and theory of functions. Part~24
\serial Zap. Nauchn. Sem. POMI
\yr 2009
\vol 371
\pages 69--77
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3545}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2010
\vol 166
\issue 2
\pages 162--166
\crossref{https://doi.org/10.1007/s10958-010-9856-6}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952095960}
Linking options:
  • https://www.mathnet.ru/eng/znsl3545
  • https://www.mathnet.ru/eng/znsl/v371/p69
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:211
    Full-text PDF :52
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024