|
Zapiski Nauchnykh Seminarov POMI, 2009, Volume 371, Pages 18–36
(Mi znsl3542)
|
|
|
|
On approximating periodic functions by Riesz sums
N. Yu. Dodonov, V. V. Zhuk Saint-Petersburg State University, Saint-Petersburg, Russia
Abstract:
Let $C$ be the space of continuous $2\pi$-periodic functions $f$ with the norm $\|f\|=\max_{x\in\mathbb R}|f(x)|$, $\sigma_n(f)$ be the Fejér sums of $f$, $E_n(f)$ be the best approximation, and let
\begin{align*}
&X_n(f,a,x)=f(x)-\sigma_n(f,x)\\
&+\frac1{\pi(n+1)}\int^\infty_{a/(n+1)}\frac{f(x+t)+f(x-t)-2f(x)}{t^2}\,dt\\
&+\frac2\pi\sum^\infty_{k=1}\frac{(-1)^ka^{2k-1}\{(E-\sigma_n)^{2k}(f,x)\}}{(2k)!(2k-1)}.
\end{align*}
Generalizing earlier results by M. Zamanskii and A. V. Efimov, the second author proved that for $f\in C$, the following relation is valid:
\begin{equation}
\|X_n(f,a)\|\le C(a)E_n(f).
\end{equation}
The present paper establishes advanced analogs of inequality (1) for the Riesz sums. Bibl. – 9 titles.
Key words and phrases:
periodic function, $L_p$ space, Fejér sums, Riesz sums, asymptotic formulas, best approximation.
Received: 10.11.2009
Citation:
N. Yu. Dodonov, V. V. Zhuk, “On approximating periodic functions by Riesz sums”, Analytical theory of numbers and theory of functions. Part 24, Zap. Nauchn. Sem. POMI, 371, POMI, St. Petersburg, 2009, 18–36; J. Math. Sci. (N. Y.), 166:2 (2010), 134–144
Linking options:
https://www.mathnet.ru/eng/znsl3542 https://www.mathnet.ru/eng/znsl/v371/p18
|
Statistics & downloads: |
Abstract page: | 411 | Full-text PDF : | 127 | References: | 63 |
|