Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2009, Volume 371, Pages 18–36 (Mi znsl3542)  

On approximating periodic functions by Riesz sums

N. Yu. Dodonov, V. V. Zhuk

Saint-Petersburg State University, Saint-Petersburg, Russia
References:
Abstract: Let $C$ be the space of continuous $2\pi$-periodic functions $f$ with the norm $\|f\|=\max_{x\in\mathbb R}|f(x)|$, $\sigma_n(f)$ be the Fejér sums of $f$, $E_n(f)$ be the best approximation, and let
\begin{align*} &X_n(f,a,x)=f(x)-\sigma_n(f,x)\\ &+\frac1{\pi(n+1)}\int^\infty_{a/(n+1)}\frac{f(x+t)+f(x-t)-2f(x)}{t^2}\,dt\\ &+\frac2\pi\sum^\infty_{k=1}\frac{(-1)^ka^{2k-1}\{(E-\sigma_n)^{2k}(f,x)\}}{(2k)!(2k-1)}. \end{align*}
Generalizing earlier results by M. Zamanskii and A. V. Efimov, the second author proved that for $f\in C$, the following relation is valid:
\begin{equation} \|X_n(f,a)\|\le C(a)E_n(f). \end{equation}
The present paper establishes advanced analogs of inequality (1) for the Riesz sums. Bibl. – 9 titles.
Key words and phrases: periodic function, $L_p$ space, Fejér sums, Riesz sums, asymptotic formulas, best approximation.
Received: 10.11.2009
English version:
Journal of Mathematical Sciences (New York), 2010, Volume 166, Issue 2, Pages 134–144
DOI: https://doi.org/10.1007/s10958-010-9853-9
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: N. Yu. Dodonov, V. V. Zhuk, “On approximating periodic functions by Riesz sums”, Analytical theory of numbers and theory of functions. Part 24, Zap. Nauchn. Sem. POMI, 371, POMI, St. Petersburg, 2009, 18–36; J. Math. Sci. (N. Y.), 166:2 (2010), 134–144
Citation in format AMSBIB
\Bibitem{DodZhu09}
\by N.~Yu.~Dodonov, V.~V.~Zhuk
\paper On approximating periodic functions by Riesz sums
\inbook Analytical theory of numbers and theory of functions. Part~24
\serial Zap. Nauchn. Sem. POMI
\yr 2009
\vol 371
\pages 18--36
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3542}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2010
\vol 166
\issue 2
\pages 134--144
\crossref{https://doi.org/10.1007/s10958-010-9853-9}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952031512}
Linking options:
  • https://www.mathnet.ru/eng/znsl3542
  • https://www.mathnet.ru/eng/znsl/v371/p18
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:416
    Full-text PDF :130
    References:64
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024