|
Zapiski Nauchnykh Seminarov POMI, 2009, Volume 370, Pages 44–57
(Mi znsl3530)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Multipliers for logarithmic Cauchy integrals in the ball
E. S. Dubtsov St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
Let $B_n$ denote the unit ball in $\mathbb C^n$, $n\ge1$. Let $\mathcal K_0(n)$ denote the class of functions defined for $z\in B_n$ as a constant plus the integral of the kernel $\log(1/(1-\langle z,\zeta\rangle))$ against a complex Borel measure on the sphere $\{\zeta\in\mathbb C^n\colon|\zeta|=1\}$. We study properties of the holomorphic functions $g$ such that $fg\in\mathcal K_0(n)$ for all $f\in\mathcal K_0(n)$. Also, we investigate extended Cesàro operators on the spaces $\mathcal K_0(n)$, $n\ge1$. Bibl. – 15 titles.
Key words and phrases:
logariphmic Cauchy integral, pointwise multiplier, generalized Cesàro operator.
Received: 25.09.2009
Citation:
E. S. Dubtsov, “Multipliers for logarithmic Cauchy integrals in the ball”, Boundary-value problems of mathematical physics and related problems of function theory. Part 40, Zap. Nauchn. Sem. POMI, 370, POMI, St. Petersburg, 2009, 44–57; J. Math. Sci. (N. Y.), 166:1 (2010), 23–30
Linking options:
https://www.mathnet.ru/eng/znsl3530 https://www.mathnet.ru/eng/znsl/v370/p44
|
Statistics & downloads: |
Abstract page: | 205 | Full-text PDF : | 48 | References: | 36 |
|