Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2005, Volume 325, Pages 113–126 (Mi znsl353)  

This article is cited in 1 scientific paper (total in 1 paper)

Lower bounds on the number of closed trajectories of generalized billiards

F. S. Duzhin

Royal Institute of Technology
Full-text PDF (221 kB) Citations (1)
References:
Abstract: The mathematical study of periodic billiard trajectories is a classical question and goes back to George Birkhoff. A billiard is a motion of a particle when a field of force is lacking. Trajectories of such a particle are geodesics. A billiard ball rebounds from the boundary of a given domain making the angle of incidence equal the angle of reflection.
Let $k$ be a fixed integer. Birkhoff proved a lower estimate for the number of closed billiard trajectories of length $k$ in an arbitrary plane domain. We give a general definition of a closed billiard trajectory when the billiard ball rebounds from a submanifold of a Euclidean space. Besides, we show how in this case one can apply the Morse inequalities using the natural symmetry (a closed polygon may be considered starting at any of its vertices and with the reversed direction). Finally, we prove the following estimate.
Let $M$ be a smooth closed $m$-dimensional submanifold of a Euclidean space, $p>2$ a prime integer. Then $M$ has at least
$$ \frac{(B-1)((B-1)^{p-1}-1)}{2p}+\frac{mB}{2}(p-1) $$
closed billiard trajectories of length $p$.
Received: 17.07.2005
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 138, Issue 3, Pages 5691–5698
DOI: https://doi.org/10.1007/s10958-006-0337-x
Bibliographic databases:
UDC: 515.14
Language: Russian
Citation: F. S. Duzhin, “Lower bounds on the number of closed trajectories of generalized billiards”, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XII, Zap. Nauchn. Sem. POMI, 325, POMI, St. Petersburg, 2005, 113–126; J. Math. Sci. (N. Y.), 138:3 (2006), 5691–5698
Citation in format AMSBIB
\Bibitem{Duz05}
\by F.~S.~Duzhin
\paper Lower bounds on the number of closed trajectories of generalized billiards
\inbook Representation theory, dynamical systems, combinatorial and algoritmic methods. Part~XII
\serial Zap. Nauchn. Sem. POMI
\yr 2005
\vol 325
\pages 113--126
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl353}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2160322}
\zmath{https://zbmath.org/?q=an:02214056}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 138
\issue 3
\pages 5691--5698
\crossref{https://doi.org/10.1007/s10958-006-0337-x}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748659661}
Linking options:
  • https://www.mathnet.ru/eng/znsl353
  • https://www.mathnet.ru/eng/znsl/v325/p113
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:227
    Full-text PDF :56
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024