Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2009, Volume 369, Pages 164–201 (Mi znsl3526)  

This article is cited in 4 scientific papers (total in 4 papers)

Asymptotic modeling of a problem with contrasting stiffness

S. A. Nazarov

Institute of Problems of Mechanical Engineering, Russian Academy of Sciences
Full-text PDF (787 kB) Citations (4)
References:
Abstract: An asymptotic model is found of the Neumann problem for second-order differential equation with piecewise constant coefficients in the composite domain $\Omega\cup\omega$ which are small of order $O(\varepsilon)$ in the subdomain $\omega$. Namely a domain $\Omega(\varepsilon)$ with a singular perturbed boundary is constructed whose solution gives a two-term asymptotic, i.e., of the increased accuracy $O(\varepsilon^2)$, approximation solution for the restriction on $\Omega$ of the original problem. In contrast to other singularly perturbed problems, in the case of contrasting stiffness modeling requires for constructing the contour $\partial\Omega(\varepsilon)$ with ledges, i.e., boundary fragments with curvature $O(\varepsilon^{-1})$. Bibl. – 33 titles.
Key words and phrases: asymptotics, singularly disturbed boundary with ledges, energy functional, modiling.
Received: 15.09.2009
English version:
Journal of Mathematical Sciences (New York), 2010, Volume 167, Issue 5, Pages 692–712
DOI: https://doi.org/10.1007/s10958-010-9955-4
Bibliographic databases:
Document Type: Article
UDC: 517.956.223+517.956.8
Language: Russian
Citation: S. A. Nazarov, “Asymptotic modeling of a problem with contrasting stiffness”, Mathematical problems in the theory of wave propagation. Part 38, Zap. Nauchn. Sem. POMI, 369, POMI, St. Petersburg, 2009, 164–201; J. Math. Sci. (N. Y.), 167:5 (2010), 692–712
Citation in format AMSBIB
\Bibitem{Naz09}
\by S.~A.~Nazarov
\paper Asymptotic modeling of a~problem with contrasting stiffness
\inbook Mathematical problems in the theory of wave propagation. Part~38
\serial Zap. Nauchn. Sem. POMI
\yr 2009
\vol 369
\pages 164--201
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3526}
\elib{https://elibrary.ru/item.asp?id=15336400}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2010
\vol 167
\issue 5
\pages 692--712
\crossref{https://doi.org/10.1007/s10958-010-9955-4}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77953914154}
Linking options:
  • https://www.mathnet.ru/eng/znsl3526
  • https://www.mathnet.ru/eng/znsl/v369/p164
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:387
    Full-text PDF :79
    References:70
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024