Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2005, Volume 325, Pages 103–112 (Mi znsl352)  

This article is cited in 1 scientific paper (total in 1 paper)

The $\sigma$-algebra of pasts of a random walk on the orbits of the Bernoulli action of the group $Z^d$

A. D. Gorbul'skii

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (189 kB) Citations (1)
References:
Abstract: In the present paper, we study the $\sigma$-algebra of pasts $\Xi=\{\xi_n\}_n$ of a random walk $\mathcal T$ on the orbits of the Bernoulli action of the group $Z^d$. The proper scaling and the scaling entropy of this sequence of partitions is calculated. We show that the proper scaling entropy of the $\sigma$-algebra of pasts is $h(\Xi)=\frac1{2d}\log(2d)$.
Received: 02.08.2005
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 138, Issue 3, Pages 5686–5690
DOI: https://doi.org/10.1007/s10958-006-0336-y
Bibliographic databases:
UDC: 519.218.82, 519.212.2
Language: Russian
Citation: A. D. Gorbul'skii, “The $\sigma$-algebra of pasts of a random walk on the orbits of the Bernoulli action of the group $Z^d$”, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XII, Zap. Nauchn. Sem. POMI, 325, POMI, St. Petersburg, 2005, 103–112; J. Math. Sci. (N. Y.), 138:3 (2006), 5686–5690
Citation in format AMSBIB
\Bibitem{Gor05}
\by A.~D.~Gorbul'skii
\paper The $\sigma$-algebra of pasts of a~random walk on the orbits of the Bernoulli action of the group~$Z^d$
\inbook Representation theory, dynamical systems, combinatorial and algoritmic methods. Part~XII
\serial Zap. Nauchn. Sem. POMI
\yr 2005
\vol 325
\pages 103--112
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl352}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2160321}
\zmath{https://zbmath.org/?q=an:1084.37006}
\elib{https://elibrary.ru/item.asp?id=9126995}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 138
\issue 3
\pages 5686--5690
\crossref{https://doi.org/10.1007/s10958-006-0336-y}
\elib{https://elibrary.ru/item.asp?id=13532445}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748635620}
Linking options:
  • https://www.mathnet.ru/eng/znsl352
  • https://www.mathnet.ru/eng/znsl/v325/p103
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024