Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2009, Volume 369, Pages 16–47 (Mi znsl3519)  

This article is cited in 2 scientific papers (total in 2 papers)

Forward dynamical problem for Timoshenko beam

M. I. Belishev, A. L. Pestov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia
Full-text PDF (884 kB) Citations (2)
References:
Abstract: We deal with an initial boundary value problem of the form
\begin{align*} &\rho u_{tt}-(\Gamma u_x) _x+Au_x+Bu=0,\qquad x>0,\quad 0<t<T,\\ &u|_{t=0}=u_t|_{t=0}=0,\qquad x\geq0,\\ &u|_{x=0}=f,\qquad0\leq t\leq T, \end{align*}
where $\rho=\mathrm{diag}\{\rho_1,\rho_2\}$, $\Gamma=\mathrm{diag}\{\gamma_1,\gamma _2\}$, $A$, and $B$ are smooth $2\times2$-matrix functions of $x$, whereas $\rho_i,\gamma_i$ are smooth positive functions provided $0<\frac{\rho_1(x)}{\gamma_1(x)}<\frac{\rho_2(x)}{\gamma_2(x)}$, $x\geq0$; $f=\mathrm{col}\{f_1(t),f_2(t)\}$ is a boundary control; $u=u^f(x,t)=\mathrm{col}\{u_1^f(x,t),u_2^f(x,t)\}$ is a solution (wave). Such a problem describes the wave processes in a system, where two different wave modes occur and propagate with different velocities. The modes interact that implies interesting physical effects but, on the other hand, complicates the picture of waves. For controls $f\in L_2((0,T);\mathbb R^2)$, we reduce the problem to the relevant integral equation, define the the generalized solutions $u^f$, and establish the well-possedness of the problem. Also, the fundamental matrix-valued solution is introduced and its leading singularities are studied. The existence of the “slow waves” that are the certain mixture of modes, which propagate with the slow mode velocity, is established. Bibl. – 11 titles.
Key words and phrases: Timoshenko beam, generalized solutions, principal singularities of fundamental solution, slow waves.
Received: 15.09.2009
English version:
Journal of Mathematical Sciences (New York), 2010, Volume 167, Issue 5, Pages 603–621
DOI: https://doi.org/10.1007/s10958-010-9948-3
Bibliographic databases:
Document Type: Article
UDC: 517
Language: Russian
Citation: M. I. Belishev, A. L. Pestov, “Forward dynamical problem for Timoshenko beam”, Mathematical problems in the theory of wave propagation. Part 38, Zap. Nauchn. Sem. POMI, 369, POMI, St. Petersburg, 2009, 16–47; J. Math. Sci. (N. Y.), 167:5 (2010), 603–621
Citation in format AMSBIB
\Bibitem{BelPes09}
\by M.~I.~Belishev, A.~L.~Pestov
\paper Forward dynamical problem for Timoshenko beam
\inbook Mathematical problems in the theory of wave propagation. Part~38
\serial Zap. Nauchn. Sem. POMI
\yr 2009
\vol 369
\pages 16--47
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3519}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2010
\vol 167
\issue 5
\pages 603--621
\crossref{https://doi.org/10.1007/s10958-010-9948-3}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77953913559}
Linking options:
  • https://www.mathnet.ru/eng/znsl3519
  • https://www.mathnet.ru/eng/znsl/v369/p16
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:705
    Full-text PDF :222
    References:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024