|
Zapiski Nauchnykh Seminarov POMI, 2009, Volume 368, Pages 181–189
(Mi znsl3512)
|
|
|
|
This article is cited in 8 scientific papers (total in 8 papers)
Minimax risk for quadratically convex sets
S. V. Reshetov Saint-Petersburg State University, Saint-Petersburg, Russia
Abstract:
We consider the problem of estimating the vector $\theta=(\theta_1,\theta_2,\dots)\in\Theta\subset l_2$ on the observations $y_i=\theta_i+\sigma_i\mathbf x_i$, $ i=1,2,\dots$, where $\mathbf x_i$ are i.i.d. $\mathcal N(0,1)$, the parametric set $\Theta$ is compact, orthosymmetric, convex and quadratically convex. We show that in that case the minimax risk is not very different from $\sup\mathfrak R_L(\Pi)$, where $\mathfrak R_L(\Pi)$ is the minimax linear risk in the same problem with the parametric set $\Pi$ and $\sup$ is taken over all the hyperrectangles $\Pi\subset\Theta$. Donoho, Liu, and McGibbon (1990) have obtained this result for the case of equal $\sigma_i$, $i=1,2,\dots$. Bibl. – 4 titles.
Key words and phrases:
minimax risk, linear minimax risk, quadratically convex sets, hyperrectangles.
Received: 18.10.2009
Citation:
S. V. Reshetov, “Minimax risk for quadratically convex sets”, Probability and statistics. Part 15, Zap. Nauchn. Sem. POMI, 368, POMI, St. Petersburg, 2009, 181–189; J. Math. Sci. (N. Y.), 167:4 (2010), 537–542
Linking options:
https://www.mathnet.ru/eng/znsl3512 https://www.mathnet.ru/eng/znsl/v368/p181
|
Statistics & downloads: |
Abstract page: | 210 | Full-text PDF : | 77 | References: | 40 |
|