Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2009, Volume 368, Pages 181–189 (Mi znsl3512)  

This article is cited in 8 scientific papers (total in 8 papers)

Minimax risk for quadratically convex sets

S. V. Reshetov

Saint-Petersburg State University, Saint-Petersburg, Russia
Full-text PDF (551 kB) Citations (8)
References:
Abstract: We consider the problem of estimating the vector $\theta=(\theta_1,\theta_2,\dots)\in\Theta\subset l_2$ on the observations $y_i=\theta_i+\sigma_i\mathbf x_i$, $ i=1,2,\dots$, where $\mathbf x_i$ are i.i.d. $\mathcal N(0,1)$, the parametric set $\Theta$ is compact, orthosymmetric, convex and quadratically convex. We show that in that case the minimax risk is not very different from $\sup\mathfrak R_L(\Pi)$, where $\mathfrak R_L(\Pi)$ is the minimax linear risk in the same problem with the parametric set $\Pi$ and $\sup$ is taken over all the hyperrectangles $\Pi\subset\Theta$. Donoho, Liu, and McGibbon (1990) have obtained this result for the case of equal $\sigma_i$, $i=1,2,\dots$. Bibl. – 4 titles.
Key words and phrases: minimax risk, linear minimax risk, quadratically convex sets, hyperrectangles.
Received: 18.10.2009
English version:
Journal of Mathematical Sciences (New York), 2010, Volume 167, Issue 4, Pages 537–542
DOI: https://doi.org/10.1007/s10958-010-9941-x
Bibliographic databases:
Document Type: Article
UDC: 519.21
Language: Russian
Citation: S. V. Reshetov, “Minimax risk for quadratically convex sets”, Probability and statistics. Part 15, Zap. Nauchn. Sem. POMI, 368, POMI, St. Petersburg, 2009, 181–189; J. Math. Sci. (N. Y.), 167:4 (2010), 537–542
Citation in format AMSBIB
\Bibitem{Res09}
\by S.~V.~Reshetov
\paper Minimax risk for quadratically convex sets
\inbook Probability and statistics. Part~15
\serial Zap. Nauchn. Sem. POMI
\yr 2009
\vol 368
\pages 181--189
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3512}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2010
\vol 167
\issue 4
\pages 537--542
\crossref{https://doi.org/10.1007/s10958-010-9941-x}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77953912127}
Linking options:
  • https://www.mathnet.ru/eng/znsl3512
  • https://www.mathnet.ru/eng/znsl/v368/p181
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:210
    Full-text PDF :77
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024