Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2009, Volume 368, Pages 156–170 (Mi znsl3510)  

This article is cited in 1 scientific paper (total in 2 paper)

Adaptive detection of functions of large number of variables

Yu. I. Ingstera, I. A. Suslinab

a Saint-Petersburg State Electrotechnical University, Saint-Petersburg, Russia
b St. Petersburg State University of Information Technologies, Mechanics and Optics, St. Petersburg, Russia
Full-text PDF (633 kB) Citations (2)
References:
Abstract: A major difficulty arising in statistics of multi-variable functions is “the curse of dimensionality”: the rates of accuracy in estimation and separation rates in detection problems behave poorly when the number of variables increases. This difficulty arises for most popular functional classes such as Sobolev or Hölder balls.
In the paper [9], it was considered functional classes of a new type, first introduced by Sloan and Wożniakowski in [14]. These classes are the balls $\mathcal F_{\sigma,s}$ in the weighed tensor product spaces that are characterized by two parameters: $\sigma>0$ is a “smoothness” parameter, and $s>0$ determines the weight sequence which characterizes “importance” of the variables. In particular, it was shown in [9] that under the white Gaussian noise model, the log-asymptotics of separation rates in detection are similar to those for one-variable functions of the smoothness $\sigma^*=\min(s,\sigma)$ independently of the original problem dimensions; thus the curse of dimensionality is “lifted.” However the test procedure depends on parameters $(\sigma,s)$ which are unknown typically.
In this paper, we propose a common test procedure that does not depend on parameters $(\sigma,s)$ and provides the same log-asymptotics of separation rates uniformly over any compact set of parameters $(\sigma,s)$. Also we give independent simple proof of the log-asymptotics of separation rates in the problem. Bibl. – 16 titles.
Key words and phrases: minimax detection, adaptive detection, functions of many variables, separation rates.
Received: 10.10.2009
English version:
Journal of Mathematical Sciences (New York), 2010, Volume 167, Issue 4, Pages 522–530
DOI: https://doi.org/10.1007/s10958-010-9939-4
Bibliographic databases:
Document Type: Article
UDC: 591.2
Language: Russian
Citation: Yu. I. Ingster, I. A. Suslina, “Adaptive detection of functions of large number of variables”, Probability and statistics. Part 15, Zap. Nauchn. Sem. POMI, 368, POMI, St. Petersburg, 2009, 156–170; J. Math. Sci. (N. Y.), 167:4 (2010), 522–530
Citation in format AMSBIB
\Bibitem{IngSus09}
\by Yu.~I.~Ingster, I.~A.~Suslina
\paper Adaptive detection of functions of large number of variables
\inbook Probability and statistics. Part~15
\serial Zap. Nauchn. Sem. POMI
\yr 2009
\vol 368
\pages 156--170
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3510}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2010
\vol 167
\issue 4
\pages 522--530
\crossref{https://doi.org/10.1007/s10958-010-9939-4}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77953913212}
Linking options:
  • https://www.mathnet.ru/eng/znsl3510
  • https://www.mathnet.ru/eng/znsl/v368/p156
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:245
    Full-text PDF :73
    References:59
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024