Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2005, Volume 325, Pages 83–102 (Mi znsl351)  

This article is cited in 105 scientific papers (total in 105 papers)

Exchangeable Gibbs partitions and Stirling triangles

A. V. Gnedina, J. Pitmanb

a Utrecht University
b University of California, Berkeley
References:
Abstract: For two collections of nonnegative and suitably normalised weights $W=(W_j)$ and $V=(V_{n,k})$, a probability distribution on the set of partitions of the set $\{1,\ldots,n\}$ is defined by assigning to a generic partition $\{A_j, j\leq k\}$ the probability $V_{n,k}\,W_{|A_1|}\cdots W_{|A_k|}$, where $|A_j|$ is the number of elements of $A_j$. We impose constraints on the weights by assuming that the resulting random partitions $\Pi_n$ of $[n]$ are consistent as $n$ varies, meaning that they define an exchangeable partition of the set of all natural numbers. This implies that the weights $W$ must be of a very special form depending on a single parameter $\alpha\in[-\infty,1]$. The case $\alpha=1$ is trivial, and for each value of $\alpha\ne 1$ the set of possible $V$-weights is an infinite-dimensional simplex. We identify the extreme points of the simplex by solving the boundary problem for a generalised Stirling triangle. In particular, we show that the boundary is discrete for $-\infty\le\alpha<0$ and continuous for $0\le\alpha<1$. For $\alpha\le 0$ the extremes correspond to the members of the Ewens–Pitman family of random partitions indexed by $(\alpha,\theta)$, while for $0<\alpha<1$ the extremes are obtained by conditioning an $(\alpha,\theta)$-partition on the asymptotics of the number of blocks of $\Pi_n$ as $n$ tends to infinity.
Received: 25.04.2005
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 138, Issue 3, Pages 5674–5685
DOI: https://doi.org/10.1007/s10958-006-0335-z
Bibliographic databases:
UDC: 519.217.72, 519.217.74
Language: English
Citation: A. V. Gnedin, J. Pitman, “Exchangeable Gibbs partitions and Stirling triangles”, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XII, Zap. Nauchn. Sem. POMI, 325, POMI, St. Petersburg, 2005, 83–102; J. Math. Sci. (N. Y.), 138:3 (2006), 5674–5685
Citation in format AMSBIB
\Bibitem{GnePit05}
\by A.~V.~Gnedin, J.~Pitman
\paper Exchangeable Gibbs partitions and Stirling triangles
\inbook Representation theory, dynamical systems, combinatorial and algoritmic methods. Part~XII
\serial Zap. Nauchn. Sem. POMI
\yr 2005
\vol 325
\pages 83--102
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl351}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2160320}
\zmath{https://zbmath.org/?q=an:02214054}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 138
\issue 3
\pages 5674--5685
\crossref{https://doi.org/10.1007/s10958-006-0335-z}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748669419}
Linking options:
  • https://www.mathnet.ru/eng/znsl351
  • https://www.mathnet.ru/eng/znsl/v325/p83
  • This publication is cited in the following 105 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:639
    Full-text PDF :192
    References:78
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024