Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2009, Volume 368, Pages 122–129 (Mi znsl3507)  

This article is cited in 1 scientific paper (total in 1 paper)

Homoclinic processes and invariant measures for hyperbolic toral automorphisms

M. I. Gordin

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia
Full-text PDF (566 kB) Citations (1)
References:
Abstract: For every hyperbolic toral automorphism $T$, the present author has defined in one of his previous papers some unbounded $T$-invariant second order difference operators related to the so-called homoclinic group of $T$. These operators were considered in the space $L_2$ with respect to the Haar measure. It is shown in the present paper that such operators give rise to transition semigroups in the space of continuous functions on the torus and generate dynamically invariant Markov processes. This leads almost immediately to a family of invariant measures for the automorphism $T$. After a short discussion, some open questions about properties of these measures and related topics are posed. Bibl. – 9 titles.
Key words and phrases: hyperbolic toral automorphism, homoclinic group, invariant homoclinic operator, invariant Markov process, invariant probability measure.
Received: 02.12.2009
English version:
Journal of Mathematical Sciences (New York), 2010, Volume 167, Issue 4, Pages 501–505
DOI: https://doi.org/10.1007/s10958-010-9936-7
Bibliographic databases:
Document Type: Article
UDC: 512.2
Language: Russian
Citation: M. I. Gordin, “Homoclinic processes and invariant measures for hyperbolic toral automorphisms”, Probability and statistics. Part 15, Zap. Nauchn. Sem. POMI, 368, POMI, St. Petersburg, 2009, 122–129; J. Math. Sci. (N. Y.), 167:4 (2010), 501–505
Citation in format AMSBIB
\Bibitem{Gor09}
\by M.~I.~Gordin
\paper Homoclinic processes and invariant measures for hyperbolic toral automorphisms
\inbook Probability and statistics. Part~15
\serial Zap. Nauchn. Sem. POMI
\yr 2009
\vol 368
\pages 122--129
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3507}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2010
\vol 167
\issue 4
\pages 501--505
\crossref{https://doi.org/10.1007/s10958-010-9936-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77953911643}
Linking options:
  • https://www.mathnet.ru/eng/znsl3507
  • https://www.mathnet.ru/eng/znsl/v368/p122
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:183
    Full-text PDF :56
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024