Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2009, Volume 367, Pages 45–66 (Mi znsl3490)  

This article is cited in 4 scientific papers (total in 4 papers)

Quadratically normal and congruence-normal matrices

Kh. D. Ikramova, H. Fassbenderb

a Moscow State University, Moscow, Russia
b Institute of Computational Mathematics, TU Braunschweig, Braunschweig, Germany
Full-text PDF (605 kB) Citations (4)
References:
Abstract: A matrix $A\in\mathbf C^{n\times n}$ is unitarily quasi-diagonalizable if $A$ can be brought by a unitary similarity transformation to a block diagonal form with $1\times1$ and $2\times2$ diagonal blocks. In particular, the square roots of normal matrices, the so-called quadratically normal matrices, are unitarily quasi-diagonalizable.
A matrix $A\in\mathbf C^{n\times n}$ is congruence-normal if $B=A\overline A$ is a conventional normal matrix. We show that every congruence-normal matrix $A$ can be brought by a unitary congruence transformation to a block diagonal form with $1\times1$ and $2\times2$ diagonal blocks. Our proof emphasizes and exploits the likeliness between the equations $X^2=B$ and $X\overline X=B$ for a normal matrix $B$. Bibl. – 13 titles.
Key words and phrases: quadratically normal matrices, conjugate-normal matrices, congruence-normal matrices, unitary similarity transformations, unitary congruence transformations, singular values.
Received: 06.10.2008
English version:
Journal of Mathematical Sciences (New York), 2010, Volume 165, Issue 5, Pages 521–532
DOI: https://doi.org/10.1007/s10958-010-9822-3
Bibliographic databases:
UDC: 512
Language: Russian
Citation: Kh. D. Ikramov, H. Fassbender, “Quadratically normal and congruence-normal matrices”, Computational methods and algorithms. Part XXII, Zap. Nauchn. Sem. POMI, 367, POMI, St. Petersburg, 2009, 45–66; J. Math. Sci. (N. Y.), 165:5 (2010), 521–532
Citation in format AMSBIB
\Bibitem{IkrFas09}
\by Kh.~D.~Ikramov, H.~Fassbender
\paper Quadratically normal and congruence-normal matrices
\inbook Computational methods and algorithms. Part~XXII
\serial Zap. Nauchn. Sem. POMI
\yr 2009
\vol 367
\pages 45--66
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3490}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2010
\vol 165
\issue 5
\pages 521--532
\crossref{https://doi.org/10.1007/s10958-010-9822-3}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77949303930}
Linking options:
  • https://www.mathnet.ru/eng/znsl3490
  • https://www.mathnet.ru/eng/znsl/v367/p45
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:260
    Full-text PDF :69
    References:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024