|
Zapiski Nauchnykh Seminarov POMI, 2009, Volume 367, Pages 27–32
(Mi znsl3488)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Verifying unitary congruence of coninvolutions, skew-coninvolutions, and connilpotent matrices of index two
Kh. D. Ikramov Moscow State University, Moscow, Russia
Abstract:
It is shown that $n\times n$ solutions $A$ and $B$ of the matrix equation
$$
X\overline X=\delta I,
$$
where $\delta$ is one and the same scalar for both matrices, are unitarily congruent if and only if
$$
\operatorname{tr}(A^*A)^k=\operatorname{tr}(B^*B)^k,\qquad k=1,2,\dots,n.
$$
Bibl. – 8 titles.
Received: 03.02.2009
Citation:
Kh. D. Ikramov, “Verifying unitary congruence of coninvolutions, skew-coninvolutions, and connilpotent matrices of index two”, Computational methods and algorithms. Part XXII, Zap. Nauchn. Sem. POMI, 367, POMI, St. Petersburg, 2009, 27–32; J. Math. Sci. (N. Y.), 165:5 (2010), 511–514
Linking options:
https://www.mathnet.ru/eng/znsl3488 https://www.mathnet.ru/eng/znsl/v367/p27
|
Statistics & downloads: |
Abstract page: | 260 | Full-text PDF : | 56 | References: | 52 |
|