Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2009, Volume 366, Pages 13–41 (Mi znsl3479)  

This article is cited in 2 scientific papers (total in 2 papers)

On contractions with compact defects

M. F. Gamal'

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia
Full-text PDF (327 kB) Citations (2)
References:
Abstract: In [8], the following question was posed: suppose that $T$ is a contraction of class $C_{10}$ such that $I-T^\ast T$ is compact and the spectrum of $T$ is the unit disk. Can the isometric asymptote of $T$ be a reductive unitary operator? In this paper, we give a positive answer to this question. We construct two kinds of examples. One of them is the operators of multiplication by the independent variable in the closure of analytic polynomials in $L^2(\nu)$, where $\nu$ is an appropiate positive finite Borel measure on the closed unit disk. The second kind of examples is based on Theorem 6.2 in [5]. We obtain a contraction $T$ satisfying all required conditions and such that $I-T^\ast T$ belongs to Schatten–von Neumann classes $\mathfrak S_p$ for all $p>1$. Also we give an example of a contraction $T$ such that $I-T^\ast T$ belongs to $\mathfrak S_p$ for all $p>1$, $T$ is quasisimilar to a unitary operator and has “more” invariant subspaces than this unitary operator. Also, following [2], we show that if a subset of the unit circle is the spectrum of a contraction quasisimilar to an absolutely continuous unitary operator, then this contraction $T$ can be chosen such that $I-T^\ast T$ is compact. Bibl. – 29 titles.
Received: 20.04.2009
English version:
Journal of Mathematical Sciences (New York), 2010, Volume 165, Issue 4, Pages 435–448
DOI: https://doi.org/10.1007/s10958-010-9811-6
Bibliographic databases:
UDC: 517.983
Language: Russian
Citation: M. F. Gamal', “On contractions with compact defects”, Investigations on linear operators and function theory. Part 37, Zap. Nauchn. Sem. POMI, 366, POMI, St. Petersburg, 2009, 13–41; J. Math. Sci. (N. Y.), 165:4 (2010), 435–448
Citation in format AMSBIB
\Bibitem{Gam09}
\by M.~F.~Gamal'
\paper On contractions with compact defects
\inbook Investigations on linear operators and function theory. Part~37
\serial Zap. Nauchn. Sem. POMI
\yr 2009
\vol 366
\pages 13--41
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3479}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2010
\vol 165
\issue 4
\pages 435--448
\crossref{https://doi.org/10.1007/s10958-010-9811-6}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77949297933}
Linking options:
  • https://www.mathnet.ru/eng/znsl3479
  • https://www.mathnet.ru/eng/znsl/v366/p13
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:137
    Full-text PDF :46
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024