|
Zapiski Nauchnykh Seminarov POMI, 2009, Volume 366, Pages 5–12
(Mi znsl3478)
|
|
|
|
Approximation in $L^p(\mathbb R^d)$, $0<p<1$, by linear combinations of the characteristic functions of balls
A. B. Aleksandrov St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia
Abstract:
We prove that the translates of the characteristic function of a ball span $L^p(\mathbb R^d)$ provided $0<p<1$ and $d\ge2$. Similar approximation problems are considered for some other functions. Bibl. – 5 titles.
Received: 10.08.2009
Citation:
A. B. Aleksandrov, “Approximation in $L^p(\mathbb R^d)$, $0<p<1$, by linear combinations of the characteristic functions of balls”, Investigations on linear operators and function theory. Part 37, Zap. Nauchn. Sem. POMI, 366, POMI, St. Petersburg, 2009, 5–12; J. Math. Sci. (N. Y.), 165:4 (2010), 431–434
Linking options:
https://www.mathnet.ru/eng/znsl3478 https://www.mathnet.ru/eng/znsl/v366/p5
|
Statistics & downloads: |
Abstract page: | 279 | Full-text PDF : | 74 | References: | 43 |
|