Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2009, Volume 365, Pages 254–261 (Mi znsl3477)  

Weierstrass preparational theorem for noncommutative rings

E. V. Ferens-Sorotskiy

St.-Petersburg State University
References:
Abstract: A power series over complete local ring can be canonically decomposed into product of an invertible power series and an unital polynomial, which degree coincides with the number of first invertible coefficient. This statement is known as Weierstrass preparation theorem. It follows from a more general statement, known as Weierstrass division theorem. The given article contains a detailed proof of generalizations of Weierstrass preparation theorem and Weierstrass division theorem for so-called rings of skew power series. Such rings arise in number theory, at first, in studies of formal groups over local fields. Bibl. – 3 titles.
Received: 12.11.2008
English version:
Journal of Mathematical Sciences (New York), 2009, Volume 161, Issue 4, Pages 597–601
DOI: https://doi.org/10.1007/s10958-009-9587-8
Bibliographic databases:
UDC: 512.6
Language: Russian
Citation: E. V. Ferens-Sorotskiy, “Weierstrass preparational theorem for noncommutative rings”, Problems in the theory of representations of algebras and groups. Part 18, Zap. Nauchn. Sem. POMI, 365, POMI, St. Petersburg, 2009, 254–261; J. Math. Sci. (N. Y.), 161:4 (2009), 597–601
Citation in format AMSBIB
\Bibitem{Fer09}
\by E.~V.~Ferens-Sorotskiy
\paper Weierstrass preparational theorem for noncommutative rings
\inbook Problems in the theory of representations of algebras and groups. Part~18
\serial Zap. Nauchn. Sem. POMI
\yr 2009
\vol 365
\pages 254--261
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3477}
\zmath{https://zbmath.org/?q=an:05660156}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2009
\vol 161
\issue 4
\pages 597--601
\crossref{https://doi.org/10.1007/s10958-009-9587-8}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70349605996}
Linking options:
  • https://www.mathnet.ru/eng/znsl3477
  • https://www.mathnet.ru/eng/znsl/v365/p254
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:260
    Full-text PDF :85
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024