|
Zapiski Nauchnykh Seminarov POMI, 2009, Volume 365, Pages 5–28
(Mi znsl3463)
|
|
|
|
This article is cited in 7 scientific papers (total in 7 papers)
Overgroups of $E(m,R)\otimes E(n,R)$
A. S. Ananievskiy, N. A. Vavilov, S. S. Sinchuk St.-Petersburg State University
Abstract:
In the present paper we study subgroups $E(m,R)\otimes E(n,R)\le H\le G=\operatorname{GL}(mn,R)$, under assumption that the ring $R$ is commutative, and $m,n\ge3$. We define the group $\operatorname{GL}_m\otimes\operatorname{GL}_n$ by equations, calculate the normaliser of the group $E(m,R)\otimes E(n,R)$ and associate to each intermediate subgroup $H$ a uniquely determined lower level $(A,B,C)$, where $A,B,C$ are ideals in $R$ such that $mA,A^2\le B\le A$ and $nA,A^2\le C\le A$. Lower level specifies the largest elementary subgroup such that $E(m,n,R,A,B,C)\le H$. The standard answer to this problem asserts that $H$ is contained in the normaliser $N_G(E(m,n,R,A,B,C))$. Bibl. – 46 titles.
Received: 10.06.2000
Citation:
A. S. Ananievskiy, N. A. Vavilov, S. S. Sinchuk, “Overgroups of $E(m,R)\otimes E(n,R)$”, Problems in the theory of representations of algebras and groups. Part 18, Zap. Nauchn. Sem. POMI, 365, POMI, St. Petersburg, 2009, 5–28; J. Math. Sci. (N. Y.), 161:4 (2009), 461–473
Linking options:
https://www.mathnet.ru/eng/znsl3463 https://www.mathnet.ru/eng/znsl/v365/p5
|
Statistics & downloads: |
Abstract page: | 560 | Full-text PDF : | 166 | References: | 76 |
|