Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1981, Volume 108, Pages 119–133 (Mi znsl3439)  

This article is cited in 2 scientific papers (total in 2 papers)

Characterization of distributions by the property of local asymptotic optimality of test statistics

Ya. Yu. Nikitin
Full-text PDF (685 kB) Citations (2)
Abstract: Let $X_1,X_2,\dots$ be i.i.d. random variables with common density $f(x-\Theta)$ depending on a location parameter $\Theta\in R^1$. Consider testing the null hypothesis $H_0:\Theta=0$ against $H_1:\Theta\ne0$ and let $\{T_n(X_1,X_2,\dots,X_n)\}$ be a sequence of test statistics. The property of local asymptotic optimality of $\{T_n\}$ in the Bahadur sense means that the exact slope $C_T(\Theta)$ of $\{T_n\}$ is equivalent to
$$ 2K(\Theta)=2\int_{-\infty}^\infty\ln\frac{f(x-\Theta)}{f(x)}f(x-\Theta)\,dx $$
when $\Theta\to0$. The aim of the paper is to obtain characterizations of densities $f$ for which test statistics such as the sample mean Kolmogorov–Smirnov and $\omega^2$ are locally asymptotically optimal. The typical result is as follows: under some conditions $\omega^2$-criterion is locally asymptotically optimal iff $f(x)=(\pi\ch x)^{-1}$, possibly with other location and scale. Similar results are obtained in the two-sample case.
English version:
Journal of Soviet Mathematics, 1984, Volume 25, Issue 3, Pages 1186–1195
DOI: https://doi.org/10.1007/BF01084797
Bibliographic databases:
UDC: 519.281
Language: Russian
Citation: Ya. Yu. Nikitin, “Characterization of distributions by the property of local asymptotic optimality of test statistics”, Studies in mathematical statistics. Part V, Zap. Nauchn. Sem. LOMI, 108, "Nauka", Leningrad. Otdel., Leningrad, 1981, 119–133; J. Soviet Math., 25:3 (1984), 1186–1195
Citation in format AMSBIB
\Bibitem{Nik81}
\by Ya.~Yu.~Nikitin
\paper Characterization of distributions by the property of local asymptotic optimality of test statistics
\inbook Studies in mathematical statistics. Part~V
\serial Zap. Nauchn. Sem. LOMI
\yr 1981
\vol 108
\pages 119--133
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl3439}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=629404}
\zmath{https://zbmath.org/?q=an:0479.62032|0528.62039}
\transl
\jour J. Soviet Math.
\yr 1984
\vol 25
\issue 3
\pages 1186--1195
\crossref{https://doi.org/10.1007/BF01084797}
Linking options:
  • https://www.mathnet.ru/eng/znsl3439
  • https://www.mathnet.ru/eng/znsl/v108/p119
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:149
    Full-text PDF :58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024