Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2005, Volume 326, Pages 198–213 (Mi znsl343)  

This article is cited in 6 scientific papers (total in 6 papers)

Pseudo-self-affine tilings in $\mathbb R^d$

B. Solomyak

Department of Mathematics, University of Washington
Full-text PDF (223 kB) Citations (6)
References:
Abstract: It is proved that every pseudo-self-affine tiling in $\mathbb R^d$ is mutually locally derivable with a self-affine tiling. A characterization of pseudo-self-similar tilings in terms of derived Voronoï tessellations is a corollary. Previously, these results were obtained in the planar case, jointly with Priebe Frank. The new approach is based on the theory of graph-directed iterated function systems and substitution Delone sets developed by Lagarias and Wang.
Received: 19.04.2005
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 140, Issue 3, Pages 452–460
DOI: https://doi.org/10.1007/s10958-007-0452-3
Bibliographic databases:
UDC: 514.87
Language: English
Citation: B. Solomyak, “Pseudo-self-affine tilings in $\mathbb R^d$”, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XIII, Zap. Nauchn. Sem. POMI, 326, POMI, St. Petersburg, 2005, 198–213; J. Math. Sci. (N. Y.), 140:3 (2007), 452–460
Citation in format AMSBIB
\Bibitem{Sol05}
\by B.~Solomyak
\paper Pseudo-self-affine tilings in~$\mathbb R^d$
\inbook Representation theory, dynamical systems, combinatorial and algoritmic methods. Part~XIII
\serial Zap. Nauchn. Sem. POMI
\yr 2005
\vol 326
\pages 198--213
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl343}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2183221}
\zmath{https://zbmath.org/?q=an:1085.52013}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 140
\issue 3
\pages 452--460
\crossref{https://doi.org/10.1007/s10958-007-0452-3}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33845729003}
Linking options:
  • https://www.mathnet.ru/eng/znsl343
  • https://www.mathnet.ru/eng/znsl/v326/p198
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:211
    Full-text PDF :58
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024