|
Zapiski Nauchnykh Seminarov LOMI, 1982, Volume 107, Pages 213–221
(Mi znsl3429)
|
|
|
|
Short communications
On the difference $f(B)-f(A)$ for unbounded self-adjoint operators in the perturbation theory
J. B. Farforovskaja
Abstract:
The main result of the paper is the estimate
$$
\|f(B)-f(A)\|\le c\biggl[\log\biggl(1+\frac1{\|B-A\|}\biggr)+7\biggr]^2\|B-A\|,
$$
obtained for Lipschitz functions, with some conditions of the growth of the functions at infinity.
Citation:
J. B. Farforovskaja, “On the difference $f(B)-f(A)$ for unbounded self-adjoint operators in the perturbation theory”, Investigations on linear operators and function theory. Part X, Zap. Nauchn. Sem. LOMI, 107, "Nauka", Leningrad. Otdel., Leningrad, 1982, 213–221; J. Soviet Math., 36:3 (1987), 429–434
Linking options:
https://www.mathnet.ru/eng/znsl3429 https://www.mathnet.ru/eng/znsl/v107/p213
|
Statistics & downloads: |
Abstract page: | 102 | Full-text PDF : | 41 |
|