|
Zapiski Nauchnykh Seminarov LOMI, 1982, Volume 107, Pages 209–212
(Mi znsl3428)
|
|
|
|
Short communications
Free interpolation of bounded harmonic functions by analytic ones
V. A. Tolokonnikov
Abstract:
Let $L^p$ (resp. $H^p$) denote the space of harmonic (analytic) functions in the unit disk $\mathbb D$ with the norm $\|f\|_p=\lim_{r\to1-2}(\int_{\mathbb T}|f(re^{it}|^p\,dt)^{1/p}$, $1\le p\le\infty$. A complete characterization of subsets $E$, $E\subset\mathbb D$, satisfying $L^\infty|_E=H^\infty|_E$ is given.
There are some results about sets $E$, $E\subset\mathbb D$ with $L^p|_E=H^p|_E$, $1\le p<\infty$.
Citation:
V. A. Tolokonnikov, “Free interpolation of bounded harmonic functions by analytic ones”, Investigations on linear operators and function theory. Part X, Zap. Nauchn. Sem. LOMI, 107, "Nauka", Leningrad. Otdel., Leningrad, 1982, 209–212; J. Soviet Math., 36:3 (1987), 426–428
Linking options:
https://www.mathnet.ru/eng/znsl3428 https://www.mathnet.ru/eng/znsl/v107/p209
|
Statistics & downloads: |
Abstract page: | 130 | Full-text PDF : | 57 |
|