Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1982, Volume 107, Pages 204–208 (Mi znsl3427)  

Short communications

Existence of invariant subspaces for operators with non-symmetrical growth of resolvent

B. M. Solomyak
Abstract: Existence of invariant and hyperinvariant subspaces is obtained for some new classes of bounded operators in a Banach space. The operators under consideration have “thin” spectrum (in the most interesting cases the spectrum is a single point) and a certain nonsymmetry in the growth of resolvent. For example, one can take $T$ such that $\sigma(T)=\{0\}$ and for some $\beta\in(0,\pi]$,
\begin{gather} \|(\lambda J-T)^{-1}\|\le c|\lambda|^{-n},\quad|\arg\lambda|>\beta;\\ \quad\|(\lambda J-T)^{-1}\|\le c\exp|\lambda|^{-\pi/2\beta}, \quad|\arg\lambda|\le\beta. \end{gather}
Hyperinvariant subspaces have the form $\operatorname{Ker}f(T)$, where $f(T)$ is defined in a special functional calculus.
English version:
Journal of Soviet Mathematics, 1987, Volume 36, Issue 3, Pages 423–426
DOI: https://doi.org/10.1007/BF01839617
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: B. M. Solomyak, “Existence of invariant subspaces for operators with non-symmetrical growth of resolvent”, Investigations on linear operators and function theory. Part X, Zap. Nauchn. Sem. LOMI, 107, "Nauka", Leningrad. Otdel., Leningrad, 1982, 204–208; J. Soviet Math., 36:3 (1987), 423–426
Citation in format AMSBIB
\Bibitem{Sol82}
\by B.~M.~Solomyak
\paper Existence of invariant subspaces for operators with non-symmetrical growth of resolvent
\inbook Investigations on linear operators and function theory. Part~X
\serial Zap. Nauchn. Sem. LOMI
\yr 1982
\vol 107
\pages 204--208
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl3427}
\zmath{https://zbmath.org/?q=an:0531.47005|0612.47004}
\transl
\jour J. Soviet Math.
\yr 1987
\vol 36
\issue 3
\pages 423--426
\crossref{https://doi.org/10.1007/BF01839617}
Linking options:
  • https://www.mathnet.ru/eng/znsl3427
  • https://www.mathnet.ru/eng/znsl/v107/p204
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024