|
Zapiski Nauchnykh Seminarov LOMI, 1982, Volume 107, Pages 178–188
(Mi znsl3423)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Zero sets for functions from $\Lambda_\omega$
N. A. Shirokov
Abstract:
The following result is proved:
THEOREM: {\it Let $S$ be an inner function, $\operatorname{spec}S\subset E$, $E\subset\operatorname{clos}\mathbb D$. Suppose $E$ satisfies
$$
\sum_{\alpha\in\mathbb D\cap E}(1-|\alpha|)<\infty,\quad\int_{\partial\mathbb D}\log\omega(\operatorname{dist}(z,E))|dz|>-\infty,
$$
$\omega$ being a continuity modulus. Then there exists a function $\Lambda_\omega$ such that $f^{-1}(0)\in E$ и $f|_S\in\Lambda_\omega$}.
Citation:
N. A. Shirokov, “Zero sets for functions from $\Lambda_\omega$”, Investigations on linear operators and function theory. Part X, Zap. Nauchn. Sem. LOMI, 107, "Nauka", Leningrad. Otdel., Leningrad, 1982, 178–188; J. Soviet Math., 36:3 (1987), 408–414
Linking options:
https://www.mathnet.ru/eng/znsl3423 https://www.mathnet.ru/eng/znsl/v107/p178
|
Statistics & downloads: |
Abstract page: | 176 | Full-text PDF : | 107 |
|