Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1982, Volume 107, Pages 150–159 (Mi znsl3420)  

This article is cited in 4 scientific papers (total in 4 papers)

Rational approximation and smoothness of functions

V. V. Peller
Full-text PDF (525 kB) Citations (4)
Abstract: For a compact set $K$ on the complex plane and a Banach space $X$ of functions on $K$ the numbers $r_n^X(f)$, $f\in X$, are defined by
$$ r_n^X(f)\overset{\text{def}}=\operatorname{int}_X\|f-r\|_X, $$
the infimum being taken over all rational functions $r=p/q$ where $\operatorname{deg}p\le n$, $\operatorname{deg}q\le n$ and $q$ does not vanisch on $K$. Thе question is to compare the smoothess of $f$ with the speed of decreasing of $r_n^X(f)$.
Two cases are considered: 1)$\operatorname{int}K$ a Jordan domain with Lipschitzian boundary,
$$ X=K^+_{L^\infty(\partial G)}\overset{\text{def}}= \biggl\{f:f(z)=\frac1{2\pi i}\int_{\partial G}\frac{g(\zeta)}{\zeta-z}d\zeta,\quad g\in L^\infty(\partial G)\biggr\}; $$
2)$K=[-1,1]$, $X=\mathrm{BMO}[-1,1]$. It is proved that $\sum_n(r_n^X)^p<+\infty$ if and only if $f$ belongs to the Besov class $B_p^{1/p}$.
English version:
Journal of Soviet Mathematics, 1987, Volume 36, Issue 3, Pages 391–398
DOI: https://doi.org/10.1007/BF01839610
Bibliographic databases:
UDC: 517+513
Language: Russian
Citation: V. V. Peller, “Rational approximation and smoothness of functions”, Investigations on linear operators and function theory. Part X, Zap. Nauchn. Sem. LOMI, 107, "Nauka", Leningrad. Otdel., Leningrad, 1982, 150–159; J. Soviet Math., 36:3 (1987), 391–398
Citation in format AMSBIB
\Bibitem{Pel82}
\by V.~V.~Peller
\paper Rational approximation and smoothness of functions
\inbook Investigations on linear operators and function theory. Part~X
\serial Zap. Nauchn. Sem. LOMI
\yr 1982
\vol 107
\pages 150--159
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl3420}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=676154}
\zmath{https://zbmath.org/?q=an:0499.41013|0609.41017}
\transl
\jour J. Soviet Math.
\yr 1987
\vol 36
\issue 3
\pages 391--398
\crossref{https://doi.org/10.1007/BF01839610}
Linking options:
  • https://www.mathnet.ru/eng/znsl3420
  • https://www.mathnet.ru/eng/znsl/v107/p150
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:203
    Full-text PDF :75
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024