|
Zapiski Nauchnykh Seminarov LOMI, 1982, Volume 107, Pages 150–159
(Mi znsl3420)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
Rational approximation and smoothness of functions
V. V. Peller
Abstract:
For a compact set $K$ on the complex plane and a Banach space $X$ of functions on $K$ the numbers $r_n^X(f)$, $f\in X$, are defined by
$$
r_n^X(f)\overset{\text{def}}=\operatorname{int}_X\|f-r\|_X,
$$
the infimum being taken over all rational functions $r=p/q$ where $\operatorname{deg}p\le n$, $\operatorname{deg}q\le n$ and $q$ does not vanisch on $K$. Thе question is to compare the smoothess of $f$ with the speed of decreasing of $r_n^X(f)$.
Two cases are considered: 1)$\operatorname{int}K$ a Jordan domain with Lipschitzian boundary,
$$
X=K^+_{L^\infty(\partial G)}\overset{\text{def}}=
\biggl\{f:f(z)=\frac1{2\pi i}\int_{\partial G}\frac{g(\zeta)}{\zeta-z}d\zeta,\quad g\in L^\infty(\partial G)\biggr\};
$$
2)$K=[-1,1]$, $X=\mathrm{BMO}[-1,1]$. It is proved that $\sum_n(r_n^X)^p<+\infty$ if and only if $f$ belongs to the Besov class $B_p^{1/p}$.
Citation:
V. V. Peller, “Rational approximation and smoothness of functions”, Investigations on linear operators and function theory. Part X, Zap. Nauchn. Sem. LOMI, 107, "Nauka", Leningrad. Otdel., Leningrad, 1982, 150–159; J. Soviet Math., 36:3 (1987), 391–398
Linking options:
https://www.mathnet.ru/eng/znsl3420 https://www.mathnet.ru/eng/znsl/v107/p150
|
Statistics & downloads: |
Abstract page: | 203 | Full-text PDF : | 75 |
|