|
Zapiski Nauchnykh Seminarov LOMI, 1982, Volume 107, Pages 136–149
(Mi znsl3419)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
The countable partition averaging operator with respect to a minimal rearrangement invariant ideal of the space $L^1(0,1)$
A. A. Mekler
Abstract:
In terms of functions $f^*$ and $f^{**}$ the necessary and sufficient conditions are given for the validity of the inclusion $\mathsf E(N_f|\mathscr T)\subset N_f$ where $f$ is an arbitrary element of $L^1(0,1)$, $N_f$, $f$, $\mathscr T$ is the minimal rearrangement invariant ideal of $L^1(0,1)$ containing $f$, $\mathscr T$ is a partition of the segment [0,1] by points of a sequence $t_n\downarrow0$ and $\mathsf E(\cdot|\mathscr T)$ is the conditional expectation operator.
Citation:
A. A. Mekler, “The countable partition averaging operator with respect to a minimal rearrangement invariant ideal of the space $L^1(0,1)$”, Investigations on linear operators and function theory. Part X, Zap. Nauchn. Sem. LOMI, 107, "Nauka", Leningrad. Otdel., Leningrad, 1982, 136–149; J. Soviet Math., 36:3 (1987), 382–391
Linking options:
https://www.mathnet.ru/eng/znsl3419 https://www.mathnet.ru/eng/znsl/v107/p136
|
Statistics & downloads: |
Abstract page: | 143 | Full-text PDF : | 59 |
|