|
Zapiski Nauchnykh Seminarov LOMI, 1982, Volume 107, Pages 71–88
(Mi znsl3416)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Once more about free interpolation by functions analytic outside of a preseribed set
S. V. Kislyakov
Abstract:
Let $\mathbb T=\{z\in\mathbb C:|z|=1\}$, $E=\operatorname{clos}E\subset\mathbb T$, $mE>0$. It is shown that (even if $E$ is nowhere dense in $\mathbb T$) there exist functions $f$ analytic in $\widehat{\mathbb C}\setminus E$ and satisfying some strong supplementary conditions (e.g. the uniform convergence of Maclaourin series in $\overline{\mathbb D}$, $\overline{\mathbb D}=\{z:|z|\le1\}$ and with boundary values of $f|(\widehat{\mathbb C}\setminus\mathbb D)$ of the form $\mathbb P_g$ with $g\in\mathbb C(\mathbb T)$, where $\mathbb P_-$ is the orthogonal projection from $L^2$ onto $H_-^2$). Moreover, some theorems about free interpolation by such functions are established.
Citation:
S. V. Kislyakov, “Once more about free interpolation by functions analytic outside of a preseribed set”, Investigations on linear operators and function theory. Part X, Zap. Nauchn. Sem. LOMI, 107, "Nauka", Leningrad. Otdel., Leningrad, 1982, 71–88; J. Soviet Math., 36:3 (1987), 342–352
Linking options:
https://www.mathnet.ru/eng/znsl3416 https://www.mathnet.ru/eng/znsl/v107/p71
|
Statistics & downloads: |
Abstract page: | 228 | Full-text PDF : | 68 |
|