Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1982, Volume 107, Pages 46–70 (Mi znsl3415)  

This article is cited in 4 scientific papers (total in 4 papers)

Rearrangements, arrangements of sings and convergence of sequences of operators

A. B. Gulisashvili
Abstract: Let $(S,\Sigma,\mu)$ be a non-atomic measure space and $T_n$, $n\ge1$, be a sequence of integral operators
$$ (T_nf)(x)=\int_S f(u)K_n(x,u)\,d\mu(u),\quad f\in L^1,\quad n\ge1, $$
with measurable and bounded kernels $K_n$. We prove that under some addtitional assumptions any function $f\in L^p$, $1\le p<\infty$, can be rearranged so that for the rearranged function $g$ the sequence $T_ng$ is convergent in the space $L^p$. As a corollary we obtain that any function $f\in L^p$, $1\le p<2$, can be rearranged so that the Fourier series with respect to any given complete orthonormal (in $L^2$) family of bounded functions is convergent in the space $L^p$. Similar questions are studied for arrangements of signs and in the case of the a.e. convergence and integrability of the maximal operator $T^*f=\sup_n|T_nf|$.
English version:
Journal of Soviet Mathematics, 1987, Volume 36, Issue 3, Pages 326–341
DOI: https://doi.org/10.1007/BF01839605
Bibliographic databases:
UDC: 517.51
Language: Russian
Citation: A. B. Gulisashvili, “Rearrangements, arrangements of sings and convergence of sequences of operators”, Investigations on linear operators and function theory. Part X, Zap. Nauchn. Sem. LOMI, 107, "Nauka", Leningrad. Otdel., Leningrad, 1982, 46–70; J. Soviet Math., 36:3 (1987), 326–341
Citation in format AMSBIB
\Bibitem{Gul82}
\by A.~B.~Gulisashvili
\paper Rearrangements, arrangements of sings and convergence of sequences of operators
\inbook Investigations on linear operators and function theory. Part~X
\serial Zap. Nauchn. Sem. LOMI
\yr 1982
\vol 107
\pages 46--70
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl3415}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=676149}
\zmath{https://zbmath.org/?q=an:0507.47012|0613.47028}
\transl
\jour J. Soviet Math.
\yr 1987
\vol 36
\issue 3
\pages 326--341
\crossref{https://doi.org/10.1007/BF01839605}
Linking options:
  • https://www.mathnet.ru/eng/znsl3415
  • https://www.mathnet.ru/eng/znsl/v107/p46
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:165
    Full-text PDF :87
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024