Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2005, Volume 326, Pages 97–144 (Mi znsl340)  

This article is cited in 12 scientific papers (total in 12 papers)

Unitary representations and modular actions

A. S. Kechris

California Institute of Technology
References:
Abstract: We call a measure-preserving action of a countable discrete group on a standard probability space tempered if the associated Koopman representation restricted to the orthogonal complement to the constant functions is weakly contained in the regular representation. Extending a result of Hjorth, we show that every tempered action is antimodular, i.e., in a precise sense “orthogonal” to any Borel action of a countable group by automorphisms on a countable rooted tree. We also study tempered actions of countable groups by automorphisms on compact metrizable groups, where it turns out that this notion has several ergodic theoretic reformulations and fits naturally in a hierarchy of strong ergodicity properties strictly between ergodicity and strong mixing.
Received: 30.03.2005
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 140, Issue 3, Pages 398–425
DOI: https://doi.org/10.1007/s10958-007-0449-y
Bibliographic databases:
UDC: 512.547, 517.987.5
Language: English
Citation: A. S. Kechris, “Unitary representations and modular actions”, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XIII, Zap. Nauchn. Sem. POMI, 326, POMI, St. Petersburg, 2005, 97–144; J. Math. Sci. (N. Y.), 140:3 (2007), 398–425
Citation in format AMSBIB
\Bibitem{Kec05}
\by A.~S.~Kechris
\paper Unitary representations and modular actions
\inbook Representation theory, dynamical systems, combinatorial and algoritmic methods. Part~XIII
\serial Zap. Nauchn. Sem. POMI
\yr 2005
\vol 326
\pages 97--144
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl340}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2183218}
\zmath{https://zbmath.org/?q=an:1086.22010}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 140
\issue 3
\pages 398--425
\crossref{https://doi.org/10.1007/s10958-007-0449-y}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33845736054}
Linking options:
  • https://www.mathnet.ru/eng/znsl340
  • https://www.mathnet.ru/eng/znsl/v326/p97
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:275
    Full-text PDF :135
    References:56
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024