Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2005, Volume 327, Pages 226–234 (Mi znsl332)  

This article is cited in 1 scientific paper (total in 1 paper)

On the cyclic elements of the shift operator in a weighted anisotropic space of holomorphic function in the polydisc

F. A. Shamoyan

I. G. Petrovsky Bryansk State University
Full-text PDF (183 kB) Citations (1)
References:
Abstract: Let $\varphi(r)=(\varphi_1(r_1),\dots,\varphi_n(r_n))$ be a vector-valued function on $\mathbf R^n_+$. A necessary and sufficiently condition is obtained for every $f\in H^\infty(\mathbf D^n)$, $f(z)\ne 0$, $z\in \mathbf D^n$ to be cyclic in the corresponding $L^p(\varphi)$ weighted space, where $\mathbf D^n$ is unit polydisc in $\mathbf C^n$.
Received: 22.09.2005
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 139, Issue 2, Pages 6491–6495
DOI: https://doi.org/10.1007/s10958-006-0365-6
Bibliographic databases:
UDC: 517.55
Language: Russian
Citation: F. A. Shamoyan, “On the cyclic elements of the shift operator in a weighted anisotropic space of holomorphic function in the polydisc”, Investigations on linear operators and function theory. Part 33, Zap. Nauchn. Sem. POMI, 327, POMI, St. Petersburg, 2005, 226–234; J. Math. Sci. (N. Y.), 139:2 (2006), 6491–6495
Citation in format AMSBIB
\Bibitem{Sha05}
\by F.~A.~Shamoyan
\paper On the cyclic elements of the shift operator in a~weighted anisotropic space of holomorphic function in the polydisc
\inbook Investigations on linear operators and function theory. Part~33
\serial Zap. Nauchn. Sem. POMI
\yr 2005
\vol 327
\pages 226--234
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl332}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2184757}
\zmath{https://zbmath.org/?q=an:1103.47007}
\elib{https://elibrary.ru/item.asp?id=9127032}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 139
\issue 2
\pages 6491--6495
\crossref{https://doi.org/10.1007/s10958-006-0365-6}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33750198209}
Linking options:
  • https://www.mathnet.ru/eng/znsl332
  • https://www.mathnet.ru/eng/znsl/v327/p226
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:251
    Full-text PDF :100
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024