Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2005, Volume 327, Pages 168–206 (Mi znsl330)  

This article is cited in 2 scientific papers (total in 2 papers)

Integration of differential forms on manifolds with locally finite variations

A. V. Potepun

Saint-Petersburg State University
Full-text PDF (348 kB) Citations (2)
References:
Abstract: It is well known that one can integrate any compactly supported continuous differential $n$-form over $n$-dimensional $C^1$-manifolds in $\mathbb R^m $ ($m\ge n$). For $n=1$ the integral may be defined over any locally rectifiable curve. Another generalization is the theory of currents (linear functionals on the space of compactly supported $C^\infty$-differential forms). The theme of the article is integration of measurable differential $n$-forms over $n$-dimensional $C^0$-manifolds in $\mathbb R^m$ with locally finite $n$-dimensional variations (a generalization of locally rectifiable curves to dimension $n>1$). The main result states that any such manifold generates an $n$-dimensional current in $\mathbb R^m$ (i.e., any compactly supported $C^\infty$ $n$-form may be integrated over a manifold with the properties mentioned above).
Received: 03.10.2005
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 139, Issue 2, Pages 6457–6478
DOI: https://doi.org/10.1007/s10958-006-0363-8
Bibliographic databases:
UDC: 517.944
Language: Russian
Citation: A. V. Potepun, “Integration of differential forms on manifolds with locally finite variations”, Investigations on linear operators and function theory. Part 33, Zap. Nauchn. Sem. POMI, 327, POMI, St. Petersburg, 2005, 168–206; J. Math. Sci. (N. Y.), 139:2 (2006), 6457–6478
Citation in format AMSBIB
\Bibitem{Pot05}
\by A.~V.~Potepun
\paper Integration of differential forms on manifolds with locally finite variations
\inbook Investigations on linear operators and function theory. Part~33
\serial Zap. Nauchn. Sem. POMI
\yr 2005
\vol 327
\pages 168--206
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl330}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2184435}
\zmath{https://zbmath.org/?q=an:1083.58012}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 139
\issue 2
\pages 6457--6478
\crossref{https://doi.org/10.1007/s10958-006-0363-8}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33750169735}
Linking options:
  • https://www.mathnet.ru/eng/znsl330
  • https://www.mathnet.ru/eng/znsl/v327/p168
    Cycle of papers
    This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:419
    Full-text PDF :115
    References:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024