|
Zapiski Nauchnykh Seminarov POMI, 2007, Volume 351, Pages 180–218
(Mi znsl33)
|
|
|
|
This article is cited in 6 scientific papers (total in 7 papers)
On estimation and detection of a function from tensor product spaces
Yu. I. Ingstera, I. A. Suslinab a Saint-Petersburg State Electrotechnical University
b St. Petersburg State University of Information Technologies, Mechanics and Optics
Abstract:
We observe an unknown $d$-variables function $f(t)$, $ t\in[0,1]^d$ in the white Gaussian noise of a level $\varepsilon>0$. We suppose that $f\in\mathcal{F}$, where $\mathcal{F}$ is a ball in Hilbert space $\mathcal{L}^d\subset L_2([0,1]^d)$ of tensor product structure. Under minimax setup, we consider two problems: to estimate $f$ (for quadratic losses) and to detect $f$, i.e., to test the null hypothesis $H_0:f=0$ against alternatives $H_1: f\in\mathcal{F}_d$, $\|f\|_2\ge r_\varepsilon$. We are interesting in the case $d=d_\varepsilon\to\infty$. We study sharp, rate and log-asymptotics (as $\varepsilon\to 0$, $d\to\infty$) in the problems. In particular, we show that log-asymptotics are different essentially for $d\ll\log\varepsilon^{-1}$ and for $d\gg\log\varepsilon^{-1}$.
Received: 11.11.2007
Citation:
Yu. I. Ingster, I. A. Suslina, “On estimation and detection of a function from tensor product spaces”, Probability and statistics. Part 12, Zap. Nauchn. Sem. POMI, 351, POMI, St. Petersburg, 2007, 180–218; J. Math. Sci. (N. Y.), 152:6 (2008), 897–920
Linking options:
https://www.mathnet.ru/eng/znsl33 https://www.mathnet.ru/eng/znsl/v351/p180
|
Statistics & downloads: |
Abstract page: | 360 | Full-text PDF : | 82 | References: | 66 |
|