|
Zapiski Nauchnykh Seminarov POMI, 2005, Volume 327, Pages 135–149
(Mi znsl328)
|
|
|
|
On the decay rate of $(p,A)$-lacunary series
F. L. Nazarova, N. A. Shirokovb a Michigan State University
b Saint-Petersburg State University
Abstract:
A power series $\sum\limits^\infty_{k=0} a_k x^{n_k}$ with radius of convergence equal to 1 is said to be $(p,A)$-lacunary if $n_k\ge Ak^p$, $A>0$, $1<p<\infty$. It is proved that if a $(p,A)$-lacunary series $f$ satisfies the condition
$$
|f(x)|\exp\biggl(B(1-x)^{-\frac1{p-1}}+\varepsilon(1-x)^{-\frac1{p-1}}\bigg/(|\log(1-x)|+1)\biggr)\underset{x\to1-0}{\longrightarrow}0,
$$
for $1<p<2$, where
$$
B=(p-1)\biggl(\frac\pi p\biggr)^{\frac p{p-1}}\cdot\frac1{A^{1/(p-1)}}\cdot\frac1{|\cos\frac{\pi p}2|^{1/(p-1)}},
$$
and $\varepsilon>0$, then $f\equiv0$.
We also construct a $(p,A)$-lacunary series $f_0$ such that
$$
|f_0(x)|\exp\biggl(B(1-x)^{-\frac1{p-1}}+C_0(1-x)^{-\frac1{p-1}}\bigg/(|\log(1-x)|^2+1)\biggr)\underset{x\to1-0}{\longrightarrow}0.
$$
for a constant $C_0=C_0(p,A)>0$.
Received: 25.09.2005
Citation:
F. L. Nazarov, N. A. Shirokov, “On the decay rate of $(p,A)$-lacunary series”, Investigations on linear operators and function theory. Part 33, Zap. Nauchn. Sem. POMI, 327, POMI, St. Petersburg, 2005, 135–149; J. Math. Sci. (N. Y.), 139:2 (2006), 6437–6446
Linking options:
https://www.mathnet.ru/eng/znsl328 https://www.mathnet.ru/eng/znsl/v327/p135
|
|