Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2005, Volume 327, Pages 135–149 (Mi znsl328)  

On the decay rate of $(p,A)$-lacunary series

F. L. Nazarova, N. A. Shirokovb

a Michigan State University
b Saint-Petersburg State University
References:
Abstract: A power series $\sum\limits^\infty_{k=0} a_k x^{n_k}$ with radius of convergence equal to 1 is said to be $(p,A)$-lacunary if $n_k\ge Ak^p$, $A>0$, $1<p<\infty$. It is proved that if a $(p,A)$-lacunary series $f$ satisfies the condition
$$ |f(x)|\exp\biggl(B(1-x)^{-\frac1{p-1}}+\varepsilon(1-x)^{-\frac1{p-1}}\bigg/(|\log(1-x)|+1)\biggr)\underset{x\to1-0}{\longrightarrow}0, $$
for $1<p<2$, where
$$ B=(p-1)\biggl(\frac\pi p\biggr)^{\frac p{p-1}}\cdot\frac1{A^{1/(p-1)}}\cdot\frac1{|\cos\frac{\pi p}2|^{1/(p-1)}}, $$
and $\varepsilon>0$, then $f\equiv0$.
We also construct a $(p,A)$-lacunary series $f_0$ such that
$$ |f_0(x)|\exp\biggl(B(1-x)^{-\frac1{p-1}}+C_0(1-x)^{-\frac1{p-1}}\bigg/(|\log(1-x)|^2+1)\biggr)\underset{x\to1-0}{\longrightarrow}0. $$
for a constant $C_0=C_0(p,A)>0$.
Received: 25.09.2005
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 139, Issue 2, Pages 6437–6446
DOI: https://doi.org/10.1007/s10958-006-0361-x
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: F. L. Nazarov, N. A. Shirokov, “On the decay rate of $(p,A)$-lacunary series”, Investigations on linear operators and function theory. Part 33, Zap. Nauchn. Sem. POMI, 327, POMI, St. Petersburg, 2005, 135–149; J. Math. Sci. (N. Y.), 139:2 (2006), 6437–6446
Citation in format AMSBIB
\Bibitem{NazShi05}
\by F.~L.~Nazarov, N.~A.~Shirokov
\paper On the decay rate of $(p,A)$-lacunary series
\inbook Investigations on linear operators and function theory. Part~33
\serial Zap. Nauchn. Sem. POMI
\yr 2005
\vol 327
\pages 135--149
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl328}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2184433}
\zmath{https://zbmath.org/?q=an:1080.30002}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 139
\issue 2
\pages 6437--6446
\crossref{https://doi.org/10.1007/s10958-006-0361-x}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33750162142}
Linking options:
  • https://www.mathnet.ru/eng/znsl328
  • https://www.mathnet.ru/eng/znsl/v327/p135
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024