Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1980, Volume 97, Pages 217–224 (Mi znsl3279)  

This article is cited in 2 scientific papers (total in 2 papers)

On existence and uniqueness of solution of Cauchy problem for equations of discrete manydimensional chiral fields assuming their values on unit sphere

B. I. Shubov
Full-text PDF (425 kB) Citations (2)
Abstract: A discrete model of classical field theory defined by the action
$$ S(\varphi)=\frac12\int_{-\infty}^{\infty}dt\sum_{k\in\mathbb Z^d}\biggl(|\dot{\varphi}_k|^2-\sum_{i=1}^d|\varphi_{k+e_i}-\varphi)_k|^2\biggr) $$
and constraints $|\varphi_k|^2=1$ is considered. Here $e_i$ are the basic vectors of $d$-dimensional integer lattice $\mathbb Z^d$, the functions $\varphi_k$ assume their values in $\mathbb R^\nu$. It is proved that the Cauchy problem for the equations of motion of the model with an arbitrary initial data consistent with constraints has at least one $C^\infty$-solution. The unlquness of the solution is established under the condition of uniform boundness of $\dot{\varphi}_k(0)$. In the case $\nu=2,3,4$ the uniqueness theorem is proved without this restriction.
English version:
Journal of Soviet Mathematics, 1984, Volume 24, Issue 5, Pages 633–638
DOI: https://doi.org/10.1007/BF01702343
Bibliographic databases:
UDC: 517.949.22
Language: Russian
Citation: B. I. Shubov, “On existence and uniqueness of solution of Cauchy problem for equations of discrete manydimensional chiral fields assuming their values on unit sphere”, Problems of the theory of probability distributions. Part VI, Zap. Nauchn. Sem. LOMI, 97, "Nauka", Leningrad. Otdel., Leningrad, 1980, 217–224; J. Soviet Math., 24:5 (1984), 633–638
Citation in format AMSBIB
\Bibitem{Shu80}
\by B.~I.~Shubov
\paper On existence and uniqueness of solution of Cauchy problem for equations of discrete manydimensional chiral fields assuming their values on unit sphere
\inbook Problems of the theory of probability distributions. Part~VI
\serial Zap. Nauchn. Sem. LOMI
\yr 1980
\vol 97
\pages 217--224
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl3279}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=602376}
\zmath{https://zbmath.org/?q=an:0459.70014|0528.70019}
\transl
\jour J. Soviet Math.
\yr 1984
\vol 24
\issue 5
\pages 633--638
\crossref{https://doi.org/10.1007/BF01702343}
Linking options:
  • https://www.mathnet.ru/eng/znsl3279
  • https://www.mathnet.ru/eng/znsl/v97/p217
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:131
    Full-text PDF :44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024