Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1980, Volume 97, Pages 102–109 (Mi znsl3268)  

This article is cited in 3 scientific papers (total in 3 papers)

The spectral measure of transition operator and harmonic functions, connected with the random walks on discrete groups

V. A. Kaimanovich
Full-text PDF (399 kB) Citations (3)
Abstract: The random walk on a countable group $G$ determined by probability measure $\mu$ is under consideration. We obtain an estimation of the spectral measure of the random walk transition operator by the Folner's sets growth for amenable groups. This estimation allows to find a lower bound for the probability of returning to the unit of $G$ on the $n$-th step. These estimations are given for the groups $G_k=\mathbb Z^k\times\mathbb Z_2(\mathbb Z^k)$. In the second part of the paper we obtain a lower bound for the entropy $h(G,\mu)$ by the variation of nontrivial bounded $\mu$-harmonic function on $G$.
English version:
Journal of Soviet Mathematics, 1984, Volume 24, Issue 5, Pages 550–555
DOI: https://doi.org/10.1007/BF01702332
Bibliographic databases:
UDC: 519.2
Language: Russian
Citation: V. A. Kaimanovich, “The spectral measure of transition operator and harmonic functions, connected with the random walks on discrete groups”, Problems of the theory of probability distributions. Part VI, Zap. Nauchn. Sem. LOMI, 97, "Nauka", Leningrad. Otdel., Leningrad, 1980, 102–109; J. Soviet Math., 24:5 (1984), 550–555
Citation in format AMSBIB
\Bibitem{Kai80}
\by V.~A.~Kaimanovich
\paper The spectral measure of transition operator and harmonic functions, connected with the random walks on discrete groups
\inbook Problems of the theory of probability distributions. Part~VI
\serial Zap. Nauchn. Sem. LOMI
\yr 1980
\vol 97
\pages 102--109
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl3268}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=602365}
\zmath{https://zbmath.org/?q=an:0452.60013|0531.60013}
\transl
\jour J. Soviet Math.
\yr 1984
\vol 24
\issue 5
\pages 550--555
\crossref{https://doi.org/10.1007/BF01702332}
Linking options:
  • https://www.mathnet.ru/eng/znsl3268
  • https://www.mathnet.ru/eng/znsl/v97/p102
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:270
    Full-text PDF :102
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024