|
Zapiski Nauchnykh Seminarov LOMI, 1980, Volume 97, Pages 88–101
(Mi znsl3267)
|
|
|
|
This article is cited in 2 scientific papers (total in 3 papers)
Asymptotic bounds on the quality of the nonparametric regression estimation in $\mathscr L_p$
I. A. Ibragimov, R. Z. Khas'minskii
Abstract:
We consider the asymptotic set-up of the following nonparametric problem. Choose the points of measurement $X_1,\dots,X_N$ and estimate the unknown function $f$ on the base of observations
$$
Y_i=f(X_i)+G_i(X_i,\omega),\quad i=1,\dots,N,
$$
where noise variables $G_1,\dots,G_N$ are independent when $X_1,\dots,X_N$ are fixed. We suppose that the deviation of estimator from regression function $f$ is measured in $\mathscr L_p$ metrix, $1\le p<\infty$. The case $p=\infty$ we consider in [1].
Citation:
I. A. Ibragimov, R. Z. Khas'minskii, “Asymptotic bounds on the quality of the nonparametric regression estimation in $\mathscr L_p$”, Problems of the theory of probability distributions. Part VI, Zap. Nauchn. Sem. LOMI, 97, "Nauka", Leningrad. Otdel., Leningrad, 1980, 88–101; J. Soviet Math., 24:5 (1984), 540–550
Linking options:
https://www.mathnet.ru/eng/znsl3267 https://www.mathnet.ru/eng/znsl/v97/p88
|
Statistics & downloads: |
Abstract page: | 283 | Full-text PDF : | 88 |
|