|
Zapiski Nauchnykh Seminarov LOMI, 1980, Volume 97, Pages 62–82
(Mi znsl3265)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
On a sufficient statistics for families of distributions with variable support of density. I
M. S. Ermakov
Abstract:
Let $X_i$, $i=\overline{1,n}$ be independent random vectors with density $f(x,\Theta)$, ($\Theta\in R^d$). Support $f(x,\Theta)$ depend on $\Theta$. Let $R_n\{\Theta|\prod_{i=1}^nf(x_i,\Theta)\ne0\}$. Then $(T,R_n)$ is sufficient statistics, if $\prod_{i=1}^nf(x_i,\Theta)=g_\Theta(T)h(x_1,\dots,x_n)\cdot\chi_{R_n}(\Theta)$, for some measurable functions $g_\Theta(T)$ and $h$. Instead of $(T,R_n)$ we take sufficient statistics $x_{j_1},\dots,x_{j_{\alpha_n}},T$ if $R_n\{\Theta|\prod_{i=1}^{\alpha_n}f(x_{ji},\Theta)\ne0\}$. Denote $x_{j_1},\dots,x_{j_{\alpha_n}}$ suffiсient statistics of described type with minimum $\alpha_n$. Under wide assumptions it is shown, that $\alpha_n$ is bounded on probability when $n\to\infty$ (Th. 4.1). The limit distribution of $\alpha_n$ and $x_{j_1},\dots,x_{j_{\alpha_n}}$ is investigated (Th. 4.4, 4.5). Some weak analogous of Dynkin's theorems is proved for statistics $T$.
Citation:
M. S. Ermakov, “On a sufficient statistics for families of distributions with variable support of density. I”, Problems of the theory of probability distributions. Part VI, Zap. Nauchn. Sem. LOMI, 97, "Nauka", Leningrad. Otdel., Leningrad, 1980, 62–82; J. Soviet Math., 24:5 (1984), 521–536
Linking options:
https://www.mathnet.ru/eng/znsl3265 https://www.mathnet.ru/eng/znsl/v97/p62
|
Statistics & downloads: |
Abstract page: | 133 | Full-text PDF : | 60 |
|