Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2005, Volume 327, Pages 98–114 (Mi znsl326)  

This article is cited in 17 scientific papers (total in 17 papers)

On the Littlewood–Paley theorem for arbitrary intervals

S. V. Kislyakov, D. V. Parilov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
References:
Abstract: We extend the results of Rubio de Francia [1] and Bourgain [2] by showing that for arbitrary mutually nonintersecting intervals $\Delta_k\subset\mathbb Z_+$, arbitrary $p\in(0,2]$, and arbitrary trigonometric polynomials $f_k$ with $\mathrm{supp}\,\widehat f_k\subset\Delta_k$, we have
$$ \biggl\|\sum_k f_k\biggr\|_{H^p(\mathbb T)}\le a_p\biggl\|\biggl(\sum_k|f_k|^2\biggr)^{1/2}\biggr\|_{L^p(\mathbb T)}. $$
The method is a development of that by Rubio de Francia.
Received: 02.10.2005
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 139, Issue 2, Pages 6417–6424
DOI: https://doi.org/10.1007/s10958-006-0359-4
Bibliographic databases:
UDC: 813.70.72339
Language: Russian
Citation: S. V. Kislyakov, D. V. Parilov, “On the Littlewood–Paley theorem for arbitrary intervals”, Investigations on linear operators and function theory. Part 33, Zap. Nauchn. Sem. POMI, 327, POMI, St. Petersburg, 2005, 98–114; J. Math. Sci. (N. Y.), 139:2 (2006), 6417–6424
Citation in format AMSBIB
\Bibitem{KisPar05}
\by S.~V.~Kislyakov, D.~V.~Parilov
\paper On the Littlewood--Paley theorem for arbitrary intervals
\inbook Investigations on linear operators and function theory. Part~33
\serial Zap. Nauchn. Sem. POMI
\yr 2005
\vol 327
\pages 98--114
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl326}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2184431}
\zmath{https://zbmath.org/?q=an:1087.42014}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 139
\issue 2
\pages 6417--6424
\crossref{https://doi.org/10.1007/s10958-006-0359-4}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33750160051}
Linking options:
  • https://www.mathnet.ru/eng/znsl326
  • https://www.mathnet.ru/eng/znsl/v327/p98
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:663
    Full-text PDF :203
    References:78
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024