|
Zapiski Nauchnykh Seminarov POMI, 2005, Volume 327, Pages 98–114
(Mi znsl326)
|
|
|
|
This article is cited in 17 scientific papers (total in 17 papers)
On the Littlewood–Paley theorem for arbitrary intervals
S. V. Kislyakov, D. V. Parilov St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
We extend the results of Rubio de Francia [1] and Bourgain [2] by showing that for arbitrary mutually nonintersecting intervals $\Delta_k\subset\mathbb Z_+$, arbitrary $p\in(0,2]$, and arbitrary trigonometric polynomials $f_k$ with $\mathrm{supp}\,\widehat f_k\subset\Delta_k$, we have
$$
\biggl\|\sum_k f_k\biggr\|_{H^p(\mathbb T)}\le a_p\biggl\|\biggl(\sum_k|f_k|^2\biggr)^{1/2}\biggr\|_{L^p(\mathbb T)}.
$$
The method is a development of that by Rubio de Francia.
Received: 02.10.2005
Citation:
S. V. Kislyakov, D. V. Parilov, “On the Littlewood–Paley theorem for arbitrary intervals”, Investigations on linear operators and function theory. Part 33, Zap. Nauchn. Sem. POMI, 327, POMI, St. Petersburg, 2005, 98–114; J. Math. Sci. (N. Y.), 139:2 (2006), 6417–6424
Linking options:
https://www.mathnet.ru/eng/znsl326 https://www.mathnet.ru/eng/znsl/v327/p98
|
Statistics & downloads: |
Abstract page: | 663 | Full-text PDF : | 203 | References: | 78 |
|